
Richardson iteration in the context of L vs. BPL (lecture notes)

Course: Derandomizing Space-Bounded Computation, Winter 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these lecture notes, we explain how to use a technique called Richardson iteration to decrease error
in space-bounded derandomization. First, we will use this technique to sketch the proof of the following
theorem.

Theorem 0.1 (Low-error derandomization of BPL [AKMPSV20]). Given a width-n length-n standard-order
ROBP f and an error parameter ε ∈ (0, 1), it is possible to deterministically compute E[f ] to within ±ε using
O(log3/2 n+ log n · log log(1/ε)) bits of space.

Afterward, we will use Richardson iteration to construct so-called weighted pseudorandom generators
with very low error.

1 The inverse Laplacian perspective

It is natural to view the problem of derandomizing BPL as a matrix powering problem. If f is a width-
w length-n standard-order ROBP, we can define its transition probability matrix M ∈ [0, 1]N×N , where
N = w · (n+ 1), by letting Mu,v be the number of edges from u to v divided by two. Note that M is not a
stochastic matrix, because Mu,v = 0 whenever u is in the final layer of the program.

For any pair of vertices u and v and any number t ∈ N, the entry M t
u,v is equal to the probability of

arriving at v if we start at u and take i random steps. In particular, if vstart is the start vertex and vacc is
the (wlog unique) accepting vertex, then E[f ] = Mn

vstart,vacc .
The first step of the proof of Theorem 0.1 is to recast the problem as a matrix inversion problem. Let

L = I −M . The matrix L is called the Laplacian matrix of the directed graph f . This matrix L is invertible,
and its inverse is given by

L−1 = M0 +M1 + · · ·+Mn.

This is because Mn+1 = 0, so (I −M) · (M0 + · · ·+Mn) = M0 −Mn+1 = I. The matrices M0, . . . ,Mn are
supported on disjoint sets of entries, so E[f ] is equal to the (vstart, vaccept) entry of L−1.

2 Richardson iteration

Suppose we are given a matrix L. We would like to approximate L−1. We are given an initial moderate-quality
approximation A ≈ L−1. How can we compute a higher-quality approximation?

Intuitively (i.e., without worrying about issues of invertibility or convergence), we can relate the exact
inverse L−1 to our initial approximation A by writing

L−1 = A · (LA)−1 = A ·
∞∑
ℓ=0

(I − LA)ℓ.

Richardson iteration consists of truncating the sum above after some finite number of terms. That is, for
each m ∈ N, define

A(m) = A ·
m∑
ℓ=0

(I − LA)ℓ.

As m gets larger, A(m) gets more “expensive” because it involves more matrix arithmetic. However, if the
entries of I − LA are “small,” then the approximation quality gets higher and higher as m gets large:

Proposition 2.1. I − LA(m) = (I − LA)m+1.
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Proof. Let E = I − LA. Then

LA(m) = (I − E) ·
m∑
ℓ=0

Eℓ =

m∑
ℓ=0

Eℓ −
m∑
ℓ=0

Eℓ+1 = I − Em+1.

Corollary 2.2. If L is the Laplacian of a length-n standard-order ROBP and ∥L−1 − A∥1 ≤ ε0, then
∥L−1 −A(m)∥1 ≤ (n+ 1) · (2ε0)m+1.

Proof. Let M be the transition probability matrix of the ROBP. Then

∥L−1 −A(m)∥1 = ∥L−1 · (I − LA(m))∥1 ≤ ∥L−1∥1 · ∥I − LA(m)∥1
= ∥L−1∥1 · ∥(I − LA)m+1∥1 (Proposition 2.1)

≤ ∥L−1∥1 · ∥I − LA∥m+1
1

= ∥L−1∥1 · ∥L · (L−1 −A)∥m+1
1

≤ ∥L−1∥1 · (∥L∥1 · ∥L−1 −A∥1)m+1

≤

(
n∑

i=0

∥M i∥1

)
· ((∥I∥1 + ∥M∥1) · ε0)m+1

= (n+ 1) · (2ε0)m+1.

Proof sketch of Theorem 0.1. Let M be the transition probability matrix of f , and let L = I −M . First, we
use the Saks-Zhou algorithm to compute a matrix A such that ∥A− L−1∥1 ≤ 0.1. (Remember, each entry of
L−1 is the expectation of some subprogram of f .) This uses O(log3/2 n) bits of space.

Now let E = I −LA and A′ = A ·
∑m

ℓ=0E
ℓ for a suitable value m = O(log(n/ε)). The algorithm: Output

the (vstart, vacc) entry of A′. The correctness of this algorithm is immediate from Corollary 2.2. We omit the
efficiency analysis because it is a bit annoying. It involves the nontrivial fact that the product of n given
n-bit integers can be computed using O(log n) bits of space.

3 Weighted PRGs

In this section, we describe a more sophisticated application of Richardson iteration. We will use Richardson
iteration to construct a weighted pseudorandom generator (WPRG).

Definition 3.1 (WPRG [BCG20]). A weighted PRG (WPRG) is a pair (G, ρ), where G : {0, 1}s → {0, 1}n
and ρ : {0, 1}s → R. We say that the WPRG fools f : {0, 1}n → {0, 1} with error ε if∣∣∣∣ E

x∼Us

[f(G(x)) · ρ(x)]− E[f ]
∣∣∣∣ ≤ ε.

Crucially, the weights ρ(x) are allowed to be negative. The expectation Ex∼Us [f(G(x)) · ρ(x)] can be
thought of as the expectation of f under a “pseudodistribution” in which some strings might have “negative
probability” of occurring.

A standard PRG is the special case ρ ≡ 1. For some purposes, WPRGs are just as useful as unweighted
PRGs. For example, an explicit optimal WPRG fooling standard-order ROBPs would imply L = BPL,
because we can exhaustively try all seeds to compute the value Ex∼Us [f(G(x)) ·ρ(x)], just like the unweighted
case. At the same time, WPRGs are sometimes easier to construct than unweighted PRGs are, because we
are allowed to use negative weights whenever it’s convenient. Indeed, we will sketch the proof of the following
theorem:

Theorem 3.2 (Low-error WPRGs for standard-order ROBPs). For every w, n ∈ N and ε ∈ (0, 1), there
exists an explicit WPRG that fools width-w length-n standard-order ROBPs with error ε and seed length
Õ(log(wn) · log n+ log(1/ε)).
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For comparison, recall that the INW PRG fools standard-order ROBPs using a seed of length O(log(wn/ε)·
log n). Theorem 3.2 is superior for small values of ε such as ε = 1/nlogn.

The original proof of Theorem 3.2 is due to Braverman, Cohen, and Garg [BCG20]. We will present
a later and simpler proof, which was discovered independently by Cohen, Doron, Renard, Sberlo, and
Ta-Shma [CDRST21] and by Pyne and Vadhan [PV21].

3.1 Applying Richardson iteration to a PRG

The idea behind the proof of Theorem 3.2 is that we will start with an unweighted PRG with error 1/poly(wn)
and seed length O(log(wn) · log n), such as Nisan’s PRG GNisan. Then, we will apply Richardson iteration to
decrease the error down to ε. Richardson iteration will increase the seed length a little, but (after applying
another trick) the final seed length will only be Õ(log(wn) · log n+ log(1/ε)).

It is not immediately clear how to implement this plan, because Richardson iteration seems to be an
operation on matrices, not an operation on PRGs. Our goal is to construct a (weighted) PRG that fools all
width-w length-n standard-order ROBPs, so we don’t have access to the matrix M like we did in the proof
of Theorem 0.1.

The solution is to “reverse-engineer” Richardson iteration, i.e., we will construct the WPRG in such a
way that Richardson iteration is what happens in the analysis of the WPRG. To explain the details, we will
use the following formalism.

Definition 3.3 (Pseudodistributions). For our purposes, a pseudodistribution over {0, 1}n is any formal real
linear combination of n-bit strings. For example, the following is a pseudodistribution over {0, 1}3:

X = 0.4 · 000 + 0.1 · 010− 0.3 · 111 + 0.7 · 110.

A distribution is the special case that the coefficients are nonnegative and the coefficients add up to 1. For
example,

Un =
∑

x∈{0,1}n
2−n · x.

A pseudodistribution with 2s terms is equivalent to a WPRG with seed length s. If X and Y are
pseudodistributions over {0, 1}n, then so are X + Y and X − Y . We also define the tensor product of
pseudodistributions as follows.

Definition 3.4 (Tensor product of pseudodistributions). Let
∑R1

i=1 ai · x(i) be a pseudodistribution over

{0, 1}n1 , and let
∑R2

i=1 bi · y(i) be a pseudodistribution over {0, 1}n2 . Then we define(
R1∑
i=1

ai · x(i)
)

⊗

(
R2∑
i=1

bi · y(i)
)

=

R1∑
i=1

R2∑
j=1

(aibj) · x(i)y(j),

a pseudodistribution over {0, 1}n1+n2 .

Using these operations, we are now ready to explain how to reverse-engineer Richardson iteration.

Definition 3.5 (Reverse-engineering Richardson iteration). Let X be a (pseudo)distribution over {0, 1}n,
say X =

∑R
k=1 ak · x(k). For each 0 ≤ i ≤ j ≤ n, define

Xi→j =
R∑

k=1

ak · (x
(k)
i+1, . . . , x

(k)
j ),

a pseudodistribution over {0, 1}j−i. Furthermore, for every 0 ≤ i < j ≤ n, define

∆i→j = U1 ⊗Xi+1→j −Xi→j ,
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so ∆i→j is a pseudodistribution over {0, 1}j−i. Finally, for every m ∈ N, we define a pseudodistribution X(m)

over {0, 1}n by the formula

X(m) =
m∑
ℓ=0

∑
i0,i1,...,iℓ∈N

0≤i0<···<iℓ=n

X0→i0 ⊗∆i0→i1 ⊗ · · · ⊗∆iℓ−1→iℓ . (1)

Intuitively, the pseudodistribution ∆i→j corresponds to the error matrix E = I − LA in Richardson
iteration. The tensor product X0→i0 ⊗∆i0→i1 ⊗ · · · ⊗∆iℓ−1→iℓ corresponds to the matrix product A · Eℓ.
The sum over all sequences of indices i0, i1, . . . , iℓ is necessary because of the way that matrix multiplication
is defined.

To rigorously show that we have successfully reverse-engineered Richardson iteration, we use the notion
of pseudoexpectation.

Definition 3.6 (Pseudoexpectation). Let X =
∑R

i=1 ai · x(i) be a pseudodistribution over {0, 1}n, and let
f : {0, 1}n → Rw×w. We define

Ẽ[f(X)] =
R∑
i=1

ai · f(x(i)).

We also use the following convenient notation. Let N = w · (n+1) be the number of vertices in a width-w
length-n standard-order ROBP with layers V0, . . . , Vn. For any matrix M ∈ RN×N , such as the transition
probability matrix, the Laplacian matrix, etc., and for any i, j ∈ {0, 1, . . . , n}, we define Mi→j to be the
w × w block of M consisting of all entries Mu,v where u ∈ Vi and v ∈ Vj .

Lemma 3.7 (We successfully reverse-engineered Richardson iteration). Let f : {0, 1}n → {0, 1}V0×Vn be
a width-w standard-order ROBP with layers V0, . . . , Vn.

1 Let N = w · (n + 1) be the number of vertices,
let M ∈ [0, 1]N×N be the transition probability matrix, and let L = I − M be the Laplacian matrix. Let
X be a (pseudo)distribution over {0, 1}n. For every 0 ≤ i ≤ j ≤ n and every u ∈ Vi, v ∈ Vj, let

Au,v = Ẽ[fu→v(Xi→j)]. For all other pairs of vertices u, v, let Au,v = 0, so A ∈ [0, 1]N×N . Let m ∈ N, and
define A(m) = A ·

∑m
ℓ=0(I − LA)ℓ. Then Ẽ[f(X(m))] = A

(m)
0→n.

The proof relies on a couple of basic properties of pseudoexpectation.

Fact 3.8. Let f : {0, 1}n → Rw×w, let X and Y be pseudodistributions over {0, 1}n, and let c ∈ R. Then

Ẽ[f(X + cY )] = Ẽ[f(X)] + c · Ẽ[f(Y )].

Fact 3.9. Let f : {0, 1}n1 × {0, 1}n2 → Rw×w be a function of the form f(x, y) = g(x) · h(y), where
g : {0, 1}n1 → Rw×w and h : {0, 1}n2 → Rw×w. Let X and Y be pseudodistributions over {0, 1}n1 and {0, 1}n2

respectively. Then
Ẽ[f(X ⊗ Y )] = Ẽ[g(X)] · Ẽ[h(Y )].

Proof of Lemma 3.7. Let fi→j : {0, 1}j−i → {0, 1}Vi×Vj denote the subprogram of f consisting only of layers
Vi, . . . , Vj . Then

Ẽ[f(X(m))] =

m∑
ℓ=0

∑
i0,i1,...,iℓ∈N

0≤i0<···<iℓ=n

Ẽ[f(X0→i0 ⊗∆i0→i1 ⊗ · · · ⊗∆iℓ−1→iℓ)]

=

m∑
ℓ=0

∑
i0,i1,...,iℓ∈N

0≤i0<···<iℓ=n

Ẽ[f0→i0(X0→i0)] · Ẽ[fi0→i1(∆i0→i1)] · · · Ẽ[fiℓ−1→iℓ(∆iℓ−1→iℓ)].

1I.e., f(x)u,v = fu→v(x).
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The first term, Ẽ[f0→i0(X0→i0)], is simply A0→i0 . Now let us consider a term of the form Ẽ[fi→j(∆i→j)]
where i < j. We have

Ẽ[fi→j(∆i→j)] = E[fi→i+1(U1)] · Ẽ[fi+1→j(Xi+1→j)]− Ẽ[fi→j(Xi→j)]

= Mi→i+1 ·Ai+1→j −Ai→j

= (MA−A)i→j

= (I − LA)i→j ,

where the last step relies on the fact that i ≠ j and hence Ii→j = 0. Thus, overall, if we let E = I − LA,
then we get

Ẽ[f(X(m))] =

m∑
ℓ=0

∑
i0,i1,...,iℓ∈N

0≤i0<···<iℓ=n

A0→i0 · Ei0→i1 · · ·Eiℓ−1→iℓ

=

m∑
ℓ=0

(AEℓ)0→n

= A
(m)
0→n.

3.2 Using correlated seeds

Let us summarize where we are at so far. Let X be the output distribution of Nisan’s PRG GNisan, with error
1/poly(wn) and seed length s = O(log(wn) · log n). By Lemma 3.7 and Corollary 2.2, if we choose a suitable
value m = Θ(log(1/ε)/ log(wn)), then the “reverse-engineered-Richardson-iteration” pseudodistribution X(m)

fools width-w length-n ROBPs with error ε. (Assume ε < 1/(wn), because otherwise Theorem 3.2 is not
interesting.)

We can interpret a pseudodistribution such as X(m) as a WPRG. However, the seed length of X(m) is too
large. Indeed, the tensor product in Eq. (1) means we are effectively running GNisan up to m+ 1 times on
independent seeds, so the seed length is bigger than m · s = Θ(log(1/ε) · log n), which is more than we can
afford.

To improve the seed length, we will use the INW generator to generate a pseudorandom sequence of seeds
for Nisan’s PRG, instead of running Nisan’s PRG on independent seeds. To explain this in more detail, let
us assume for simplicity’s sake (and wlog) that each individual bit of X has a uniform marginal distribution
over {0, 1}. That way, the pseudodistribution ∆i→j := U1 ⊗Xi+1→j −Xi→j can be equivalently written as
∆i→j = Xi→i+1 ⊗Xi+1→j −Xi→j . Consequently, after expanding, the pseudodistribution X(m) has the form

X(m) =

K∑
k=1

µk ·X(m,k),

where K = O(n)m, µk ∈ {±1}, and each X(m,k) is a distribution of the form

X(m,k) = X0→i0 ⊗ · · · ⊗Xiℓ−1→iℓ

for some ℓ ≤ 2m and some 0 ≤ i0 < i1 < · · · < iℓ = n.
Let Σ = {0, 1}s be the domain of GNisan. The distribution X(m,k) can be written as

X(m,k) = (GNisan(R0)0→i0 , GNisan(R1)i0→i1 , . . . , GNisan(Rℓ)iℓ−1→iℓ),

where R0, . . . , Rℓ ∈ Σ are sampled independently and uniformly at random. A key observation is that we can
write

f(X(m,k)) = g(R0, . . . , Rℓ),

where g is a width-w length-(ℓ+1) ROBP over the alphabet Σ. We can fool such programs with a short seed:
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Theorem 3.10 (Fooling ROBPs over a large alphabet). For every w, n, s ∈ N and δ ∈ (0, 1), there exists an
explicit PRG that fools width-w length-m ROBPs over the alphabet {0, 1}s with error δ and seed length

O(s+ log(wm/δ) · logm).

Proof idea. It is straightforward to generalize the INW generator to the large-alphabet setting.

Proof sketch of Theorem 3.2. We use the pseudodistributionX(m), except that instead of sampling R0, . . . , Rℓ

independently, we use the PRG from Theorem 3.10 with δ = ε/K to sample them. The overall seed length of
the WPRG is therefore

O(logK + s+ log(wm/δ) · logm) = Õ(log(wn) · log n+ log(1/ε)).

By the triangle inequality, sampling R0, . . . , Rℓ pseudorandomly only creates Kδ = ε additional error.
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