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The complexity class BPL

• Let 𝑓: 0, 1 ∗ → 0, 1

• By definition, 𝑓 ∈ BPL if there exists a Turing machine 𝑀 such that:

• There is a read-only input tape

• There is a read/write work tape of size 𝑂 log 𝑛

• There is a read-once random tape

• For every 𝑥 ∈ 0, 1 ∗, we have Pr 𝑀 𝑥 = 𝑓 𝑥 ≥ 2/3

• 𝑀 halts for every input and every setting of the random tape
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Undirected 𝑠-𝑡 connectivity

• Theorem [AKLLR 1979]: The undirected 𝑠-𝑡 connectivity problem is in BPL

• Algorithm: Take a polynomial-length random walk from 𝑠, and accept if 

you ever visit 𝑡

• We analyzed this algorithm using the spectral expansion parameter
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Spectral expansion parameter

• Let 𝐻 be a directed regular multigraph

• Identify 𝐻 with its transition probability matrix. Definition:

𝜆 𝐻 = max
𝜋

𝜋𝐻 − 𝑢 2

𝜋 − 𝑢 2
,

where 𝜋 is a probability vector and 𝑢 is the uniform probability vector
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Derandomization

• AKLLR 1979: Does L = BPL?  (*actually they asked about RL)

• Conjecture: L = BPL

• L = BPL would mean that randomness is never necessary for space-

efficient computation

• Intensely studied since AKLLR 1979 paper… with considerable success!
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Read-once branching programs (ROBPs)

• To prove L = BPL, it suffices to design a deterministic log-space 

algorithm for the following problem:

• Input: The description of a standard-order ROBP 𝑓

• Output: A number 𝜇 such that 𝔼 𝑓 − 𝜇 ≤ 0.1
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Read-once branching programs (ROBPs)
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Four approaches

• In this course, we studied four approaches to derandomizing BPL:

1. The INW Approach

2. The Iterated Restrictions Approach

3. The Nisan Approach

4. The Inverse Laplacian Approach
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1. The INW Approach
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Pseudorandom generators

• A pseudorandom generator (PRG) is a function 𝐺: 0, 1 𝑠 → 0, 1 𝑛

• The PRG fools 𝑓: 0, 1 𝑛 → 0, 1  with error 𝜀 if

𝔼 𝑓 − 𝔼[𝑓 𝐺 𝑈𝑠 ≤ 𝜀

𝐺



The INW PRG

• Theorem [Nisan 1992]: For every 𝑤, 𝑛, 𝜀, there is an explicit PRG that fools width-𝑤 

length-𝑛 standard-order ROBPs with error 𝜀 and seed length 𝑂 log 𝑤𝑛/𝜀 ⋅ log 𝑛

• One example of such a PRG: The INW PRG [Impagliazzo, Nisan, Wigderson 1994]

• Base case: 𝐺0 𝑥 = 𝑥

• Recursive step: 𝐺𝑖+1 𝑥, 𝑦 = 𝐺𝑖 𝑥 , 𝐺𝑖 𝐻𝑖+1 𝑥, 𝑦  for some expander graph 𝐻𝑖+1
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Expander graphs

• Let 𝐻 be a regular undirected multigraph

• Informally, we say that 𝐻 is an expander if 𝐻 has low degree, and yet 

𝜆 𝐻  is small

• Fact: For every 𝑛 ∈ ℕ and 𝜆 ∈ 0, 1 , there exists an explicit expander 

on 𝑛 vertices with 𝜆 𝐻 ≤ 𝜆 and deg 𝐻 ≤ poly 1/𝜆
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Analysis of the INW PRG

• Assume by induction that 𝐺𝑖 fools width-𝑤 programs with error 𝜀𝑖

• Expander Mixing Lemma ⇒ 𝐺𝑖+1 fools width-𝑤 programs with error

2 ⋅ 𝜀𝑖 + 𝜆 𝐻𝑖+1 ⋅ 𝑤

• Consequently, if 𝜆 𝐻𝑖 ≤ 𝜆 for every 𝑖, then 𝐺log 𝑛 fools width-𝑤 

programs with error 𝜆 ⋅ 𝑤 ⋅ 𝑛

• Choose 𝜆 =
𝜀

𝑤𝑛
 

13



Regular ROBPs

• An ROBP is regular if every vertex has two incoming edges (except the 

vertices in layer 0)

• Theorem [Lee, Pyne, Vadhan 2023]: If 𝑓: 0, 1 𝑛 → 0, 1  can be computed 

by a standard-order ROBP of width 𝑤, then 𝑓 can also be computed 

by a standard-order regular ROBP of width 𝑂 𝑤𝑛
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Fooling regular ROBPs

• Theorem [Braverman, Rao, Raz, Yehudayoff 2014]: If 𝜆 𝐻𝑖 ≤ 𝜆 for every 𝑖, then 

the INW generator 𝐺log 𝑛 fools width-𝑤 standard-order regular ROBPs 

with error 𝜆 ⋅ poly 𝑤 ⋅ log 𝑛

• Proof based on analyzing the weight of a regular ROBP

• Corollary: Can fool such programs with seed length ෨𝑂 log 𝑤/𝜀 ⋅ log 𝑛
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Reingold’s theorem

• Theorem [Reingold 2005]: Undirected 𝑠-𝑡 connectivity is in L

• Algorithm idea [Rozenman, Vadhan 2005]:

• Try all seeds for the INW generator, with suitable 𝜆 𝐻𝑖  values

• Accept if there is a seed that brings us from 𝑠 to 𝑡

• Analysis based on the derandomized square operation

𝜆 𝐺 𝑠 𝐻 ≤ 1 − 𝜆 𝐻 ⋅ 𝜆 𝐺 2 + 𝜆 𝐻
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2. The Iterated Restrictions 

Approach
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The Forbes-Kelley PRG

• Let 𝐷, 𝑇, 𝑈 be independent random variables, each distributed over 0, 1 𝑛

• Assume 𝑈 is uniform random, 𝐷 is 2𝑘 -wise uniform, 𝑇 is 𝑘-wise uniform

• Theorem [Forbes, Kelley 2018]: 𝐷 + 𝑇 ∧ 𝑈  fools width-𝑤 length-𝑛 ROBPs with 

error 𝑤 ⋅ 𝑛 ⋅ 2−𝑘/2

• Proof uses Fourier analysis
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Iterated restrictions

• Define 𝑋 ∈ 0, 1,⋆ 𝑛 by

𝑋𝑖 = ቊ
𝐷𝑖 , 𝑇𝑖 = 0
⋆,  𝑇𝑖 = 1

• 𝐷 + 𝑇 ∧ 𝑈  fools 𝑓, so 𝔼 𝑓 ≈ 𝔼𝑋,𝑈 𝑓ȁ𝑋 𝑈

• One round ⇒ Assign values to half the variables. Cost 𝑂 log 𝑤𝑛/𝜀 ⋅ log 𝑛

• Repeat for 𝑂 log 𝑛/𝜀  rounds

• ⇒ PRG fooling ROBPs with seed length 𝑂 log 𝑤𝑛/𝜀 ⋅ log 𝑛/𝜀 ⋅ log 𝑛
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Arbitrary-order ROBPs

• The Forbes-Kelley seed length is a bit worse than the INW seed length

• However, FK fools arbitrary-order ROBPs!

• That is, if we let 𝐺𝜋 𝑥 = 𝐺 𝑥 𝜋 1 , … , 𝐺 𝑥 𝜋 𝑛 , then 𝐺𝜋 fools 

ROBPs for any permutation 𝜋: 𝑛 → [𝑛]

• Reason: 𝐷𝜋 is still 2𝑘 -wise uniform and 𝑇𝜋 is still 𝑘-wise uniform
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The constant-width case

• Theorem [Forbes, Kelley 2018]: Using only ෨𝑂 log 𝑛/𝜀  truly random bits, it 

is possible to assign values to ≈half the variables of a constant-width 

ROBP while preserving its expectation to within error 𝜀

• Construction based on small-bias generators
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Iterated restrictions with early termination

• Let ℱ be a subclass of constant-width ROBPs, e.g., read-once CNFs

• Strategy for fooling ℱ with seed length ෨𝑂 log 𝑛/𝜀 :

1. Do poly log log 𝑛/𝜀  rounds of Forbes-Kelley restrictions

2. Prove that w.h.p., 𝑓 simplifies under the restrictions

3. Use some other approach to fool the simplified 𝑓 with a short seed
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3. The Nisan Approach
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Nisan’s PRG

• Let ℋ be a pairwise uniform family of hash functions ℎ: 0, 1 𝑘 → 0, 1 𝑘

• 𝑘 = 𝑂 log 𝑤𝑛/𝜀

• Nisan’s PRG:

𝐺ℎ1,…,ℎlog 𝑛
𝑥 = 𝐺ℎ1,…,ℎlog 𝑛−1

𝑥 , 𝐺ℎ1,…,ℎlog 𝑛−1
ℎlog 𝑛 𝑥

• Pairwise Uniformity Mixing Lemma ⇒ Can generate 𝑛 bits that fool 𝑤-state 

automata with error 𝜀 and seed length 𝑂 log 𝑤𝑛/𝜀 ⋅ log 𝑛)
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Good hash functions

• The seed length of Nisan’s PRG is not any better than that of the INW PRG

• However, Nisan’s PRG has some useful extra structure

• With high probability, ℎ𝑖 is “good” relative to the automaton 𝑀 and the 

previous hash functions ℎ1, … , ℎ𝑖−1

• I.e., 𝑀 doesn’t distinguish 𝐺ℎ1,…,ℎ𝑖
 from two copies of 𝐺ℎ1,…,ℎ𝑖−1
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BPL ⊆ SC 

• Theorem [Nisan 1994]: Every problem in BPL can be solved by a 

deterministic algorithm that simultaneously uses 𝑂 log2 𝑛  bits of 

space and poly 𝑛  time

• Proof idea: Exhaustively search for a good ℎ1, then exhaustively 

search for a good ℎ2, then a good ℎ3, etc.
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BPL ⊆ L1.5 

• Theorem [Saks, Zhou 1995]: BPL ⊆ DSPACE log3/2 𝑛

• Proof idea: Sample only log 𝑛 hash functions ℎ = ℎ1, … , ℎ log 𝑛

• Repeatedly use Nisan’s PRG 𝐺ℎ to approximate 𝑀2 log 𝑛
 (same ℎ)

• After each application of 𝐺ℎ, perturb and round the entries of the 

transition probability matrix, to break the correlations with ℎ
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4. The Inverse Laplacian 

Approach
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Inverse Laplacian of an ROBP

• Let 𝑓 be an ROBP on 𝑁 vertices

• Let 𝑀 ∈ 0, 1 𝑁×𝑁 be the transition probability matrix

• Let 𝐿 be the Laplacian matrix: 𝐿 = 𝐼 − 𝑀

• Then 𝐿−1 = 𝑀0 + ⋯ + 𝑀𝑛

• 𝐿−1 is the matrix of expectations of all subprograms 𝑓𝑢→𝑣
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Non-black-box error reduction

• Theorem [Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, Vadhan 2020]: Given the description 

of a width-𝑛 length-𝑛 ROBP 𝑓, it is possible to deterministically compute 𝜇 

such that 𝜇 − 𝔼 𝑓 ≤ 𝜀 using space 𝑂 log3/2 𝑛 + log 𝑛 ⋅ log log 1/𝜀

• Proof is based on Richardson iteration: If 𝐴 ≈ 𝐿−1, then 𝐴 ⋅ σ𝑖=0
𝑚 𝐼 − 𝐿𝐴 𝑖 

is a better approximation for 𝐿−1
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Weighted PRGs

• A WPRG is a pair 𝐺, 𝜌  where 𝐺: 0, 1 𝑠 → 0, 1 𝑛 and 𝜌: 0, 1 𝑠 → ℝ

• We say that the WPRG fools 𝑓: 0, 1 𝑛 → 0, 1  with error 𝜀 if

𝔼 𝑓 − 𝔼𝑥∈ 0,1 𝑠 𝑓 𝐺 𝑥 ⋅ 𝜌 𝑥 ≤ 𝜀
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Low-error WPRGs

• Theorem [Braverman, Cohen, Garg 2018]: For every 𝑤, 𝑛, 𝜀, there is an explicit 

WPRG that fools width-𝑤 length-𝑛 standard-order ROBPs with error 𝜀 

and seed length ෨𝑂 log 𝑤𝑛 ⋅ log 𝑛 + log 1/𝜀

• Proof idea [Cohen, Doron, Renard, Sberlo, Ta-Shma 2021; Pyne, Vadhan 2021]:

1. Reverse-engineer Richardson iteration

2. Use the INW generator to sample a sequence of correlated seeds for 𝐴𝑖 term
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Hitting sets

• Let 𝐻 ⊆ 0, 1 𝑛 and let ℱ be a class of 𝑓: 0, 1 𝑛 → 0, 1

• 𝐻 is an 𝜀-hitting set for ℱ if, for every 𝑓 ∈ ℱ such that 𝔼 𝑓 > 𝜀, 

there is some 𝑥 ∈ 𝐻 such that 𝑓 𝑥 = 1

• PRG ⇒ WPRG ⇒ Hitting Set
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Using hitting sets to derandomize BPL

• Theorem [Cheng, H 2020]: Assume ∃ 𝑂(log 𝑛)-space-computable 0.5-hitting 

set for width-𝑛 length-𝑛 standard-order ROBPs. Then L = BPL

• Proof idea: Each 𝑥 ∈ 𝐻 is the truth table of a candidate PRG 

𝐺(𝑥): 0, 1 𝑂(log 𝑛) → 0, 1 𝑛

• Each candidate PRG 𝐺 𝑥  induces a candidate approximation 𝐴 𝑥  for 𝐿−1

• To judge whether 𝐺 𝑥  is a good PRG, check whether 𝐿𝐴(𝑥) ≈ 𝐼
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Conclusions

• To me, L vs. BPL is the most exciting topic in modern complexity theory

• It is an extremely fundamental topic, like P vs. NP, L vs. P, etc.

• L vs. BPL is special because we can feel optimistic about resolving it!

• We already have many powerful and interesting techniques

• Maybe you have what it takes to prove L = BPL!
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Thank you!

• Being your instructor has been a privilege

• Please fill out the Graduate Course Feedback Form using My.UChicago 

(deadline is Sunday, March 16)
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