Derandomizing Space-Bounded Computation

Winter 2025

Course Summary & Review

Instructor: William Hoza

The University of Chicago

The complexity class BPL

e Llet f:{0,1}* - {0, 1}

* By definition, f € BPL if there exists a Turing machine M such that:

* There is a read-only input tape ’%
* There is a read/write work tape of size O(logn) @

* There is a read-once random tape [

werry et
TER DO

* Forevery x € {0,1}*, we have Pr[M(x) = f(x)] = 2/3

* M halts for every input and every setting of the random tape

Undirected s-t connectivity

* Theorem [AKLLR 1979]: The undirected s-t connectivity problem is in BPL

e Algorithm: Take a polynomial-length random walk from s, and accept if

you ever visit t

 We analyzed this algorithm using the spectral expansion parameter

Spectral expansion parameter

* Let H be a directed regular multigraph

 ldentify H with its transition probability matrix. Definition:

|mH —u“z

A(H) = max ,
r|[m—ull,

where 1T is a probability vector and u is the uniform probability vector

Derandomization

e AKLLR 1979: Does L. = BPL? (*actually they asked about RL)
* Conjecture: L = BPL

., = BPL would mean that randomness is never necessary for space-

efficient computation

* Intensely studied since AKLLR 1979 paper... with considerable success!

Read-once branching programs (ROBPs)

* To prove L = BPL, it suffices to design a deterministic log-space

algorithm for the following problem:

* Input: The description of a standard-order ROBP f

* Output: A number u such that |E[f] — u| < 0.1

Width w

Read-once branching programs (ROBPs)

X 1

0

O
O
O

'O OO0 O

0

0 1 0 1

7 Vstart “ O 1 “&
X

0 O QO ©
QQ O &

O O O O ®

n + 1 layers (n = length)

Computes

f:{0,1}* - {0, 1}

Four approaches

* In this course, we studied four approaches to derandomizing BPL:
1. The INW Approach
2. The lterated Restrictions Approach
3. The Nisan Approach

4. The Inverse Laplacian Approach

1. The INW Approach

Pseudorandom generators
* A pseudorandom generator (PRG) is a function G: {0,1}* — {0, 1}"

* The PRG fools f:{0,1}" — {0, 1} with error ¢ if

[E[f] - E[f(G(Uy)| < ¢

The INW PRG

* Theorem [nisan 1992]: For every w, n, &, there is an explicit PRG that fools width-w

length-n standard-order ROBPs with error € and seed length O (log(wn/¢) - logn)
* One example of such a PRG: The INW PRG [Impagliazzo, Nisan, Wigderson 1994]

 Base case: Gy(x) = x

* Recursive step: Gj+1(x,y) = (Gi(x), G;(H;1|[x, y])) for some expander graph H; 44

11

Expander graphs

* Let H be a regular undirected multigraph

* Informally, we say that H is an expander if H has low degree, and yet

A(H) is small

* Fact: Foreveryn € Nand A € (0, 1), there exists an explicit expander

on n vertices with A(H) < Aand deg(H) < poly(1/4)

12

Analysis of the INW PRG

* Assume by induction that G; fools width-w programs with error &;

* Expander Mixing Lemma = G;,4 fools width-w programs with error

2-&+A(Hiyq) - w

» Consequently, if A(H;) < A for every i, then Gj,g ,, fools width-w

programs with error 4 - w - n

* Choose 1 = — v
wn

13

Regular ROBPs

 An ROBP is regular if every vertex has two incoming edges (except the

vertices in layer 0)

* Theorem [Lee, Pyne, Vadhan 2023]: If f: {0, 1}"* — {0, 1} can be computed
by a standard-order ROBP of width w, then f can also be computed
by a standard-order regular ROBP of width O(wn)

14

Fooling regular ROBPs

* Theorem [Braverman, Rao, Raz, Yehudayoff 2014]: |f A(Hi) < Afor every i, then
the INW generator Gj4g 4, fools width-w standard-order regular ROBPs
with error A - poly(w) - logn

* Proof based on analyzing the weight of a regular ROBP

» Corollary: Can fool such programs with seed length O (log(w/¢) - logn)

15

Reingold’s theorem

* Theorem [reingold 2005]: Undirected s-t connectivity is in L

e Algorithm idea [Rozenman, Vadhan 2005]:

* Try all seeds for the INW generator, with suitable A(H;) values

* Acceptif thereis a seed that bringsusfromstot

* Analysis based on the derandomized square operation

AMGEH) < (1-AH)) - AG)? + A(H)

16

2. The lterated Restrictions

Approach

The Forbes-Kelley PRG

* Let D, T, U be independent random variables, each distributed over {0, 1}"
* Assume U is uniform random, D is (2k)-wise uniform, T is k-wise uniform

* Theorem [rorbes, kelley 2018]: D + (T A U) fools width-w length-n ROBPs with

errorw - n - 27k/2

* Proof uses Fourier analysis

18

Iterated restrictions

* Define X € {0, 1,x}" by

D;, T;

* D+ (T AU)fools f,so E[f| = Ey y[f|x(U)]

0
1

* One round = Assign values to half the variables. Cost O(log(wn/¢) - logn)
* Repeat for O(log(n/e)) rounds

* = PRG fooling ROBPs with seed length O(log(wn/¢) - log(n/¢) - logn)

19

Arbitrary-order ROBPs

* The Forbes-Kelley seed length is a bit worse than the INW seed length

* However, FK fools arbitrary-order ROBPs!

* That is, if we let G (x) = (G(x)n(l),) G(x)n(n)), then G, fools
ROBPs for any permutation m: [n] — [n]

* Reason: D, is still (2k)-wise uniform and T, is still k-wise uniform

20

The constant-width case

* Theorem [Forbes, Kelley 2018]: Using only O (log(n /<)) truly random bits, it
is possible to assign values to =half the variables of a constant-width
ROBP while preserving its expectation to within error ¢

e Construction based on small-bias generators

21

lterated restrictions with early termination

e Let F be a subclass of constant-width ROBPs, e.g., read-once CNFs

» Strategy for fooling F with seed length O (log(n/¢)):
1. Do poly(loglog(n/e)) rounds of Forbes-Kelley restrictions
2. Prove that w.h.p., f simplifies under the restrictions

3. Use some other approach to fool the simplified f with a short seed

22

3. The Nisan Approach

Nisan’s PRG

e Let H be a pairwise uniform family of hash functions h: {0, 1}* — {0, 1}*
* k = 0(log(wn/g))

* Nisan’s PRG:

Ghl,...,hlogn(x) = (Ghl,...,hlog n—1(x)’ Ghl,...,hlog 1 (hlogn(x)))

* Pairwise Uniformity Mixing Lemma = Can generate n bits that fool w-state

automata with error € and seed length O(log(wn/¢g)) - logn)

24

Good hash functions

* The seed length of Nisan’s PRG is not any better than that of the INW PRG
 However, Nisan’s PRG has some useful extra structure

* With high probability, h; is “good” relative to the automaton M and the

previous hash functions hq, ..., h;_4

* l.e., M doesn’t distinguish Gy, p, from two copies of Gy, n. .

25

BPL € SC

* Theorem [Nisan 1994]: Every problem in BPL can be solved by a
deterministic algorithm that simultaneously uses O (log? n) bits of

space and poly(n) time

* Proof idea: Exhaustively search for a good h,, then exhaustively

search for a good h,, then a good h3, etc.

26

BPL c L1

» Theorem [Saks, Zhou 1995]: BPL < DSPACE(log3/2 n)

logn

* Proof idea: Sample only ,/log n hash functions h = (hl, e h\/—)

Jlogn

* Repeatedly use Nisan’s PRG G7 to approximate M? (same ft)

* After each application of G+, perturb and round the entries of the

transition probability matrix, to break the correlations with h

27

4. The Inverse Laplacian

Approach

Inverse Laplacian of an ROBP

* Let f be an ROBP on N vertices

e Let M € [0, 1]V*N be the transition probability matrix
* Let L be the Laplacian matrix:L =1 —M

e ThenL ' = MO + ... + M"

71 is the matrix of expectations of all subprograms f,,_,,,

29

Non-black-box error reduction

* Theorem [Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, Vadhan 2020]. Given the description

of a width-n length-n ROBP f, it is possible to deterministically compute u

such that |u — E|[f]| < € using space 0(10g3/2 n+ logn - loglog(l/e))

* Proof is based on Richardson iteration: If A = L™%, then A - X% (I — LA)'

is a better approximation for L1

30

Weighted PRGs

* A WPRG is a pair (G, p) where G:{0,1}° - {0,1}"*and p:{0,1}° - R
* We say that the WPRG fools f:{0,1}" — {0, 1} with error ¢ if

[E[f] = Exepos[f(G()) - p(0)]| < &

Low-error WPRGS

* Theorem [Braverman, Cohen, Garg 2018]: For every w, n, €, there is an explicit
WPRG that fools width-w length-n standard-order ROBPs with error ¢

and seed length O(log(wn) - logn + log(1/¢))

* Proof idea [Cohen, Doron, Renard, Sberlo, Ta-Shma 2021; Pyne, Vadhan 2021].
1. Reverse-engineer Richardson iteration

2. Use the INW generator to sample a sequence of correlated seeds for A* term

32

Hitting sets

* Let H € {0,1}" and let F be a class of f:{0,1}" — {0, 1}

* H is an &-hitting set for F if, for every f € F such that E[f] > &,

there is some x € H such that f(x) =1

* PRG = WPRG = Hitting Set

33

Using hitting sets to derandomize BPL

* Theorem [Cheng, H 2020]: Assume 3 O(log n)-space-computable 0.5-hitting

set for width-n length-n standard-order ROBPs. Then L. = BPL

* Proof idea: Each x € H is the truth table of a candidate PRG
G). {0, 1}0(log n) _ {O, 1}11

» Each candidate PRG G induces a candidate approximation A for 71

» To judge whether G is a good PRG, check whether LA® =~ |

34

Conclusions

* To me, L vs. BPL is the most exciting topic in modern complexity theory
* It is an extremely fundamental topic, like P vs. NP, L vs. P, etc.

* L. vs. BPL is special because we can feel optimistic about resolving it!

* We already have many powerful and interesting techniques

* Maybe you have what it takes to prove L. = BPL!

35

Thank youl!

* Being your instructor has been a privilege

* Please fill out the Graduate Course Feedback Form using My.UChicago

(deadline is Sunday, March 16)

36

	Slide 1: Derandomizing Space-Bounded Computation Winter 2025 Course Summary & Review
	Slide 2: The complexity class BPL
	Slide 3: Undirected s-t connectivity
	Slide 4: Spectral expansion parameter
	Slide 5: Derandomization
	Slide 6: Read-once branching programs (ROBPs)
	Slide 7: Read-once branching programs (ROBPs)
	Slide 8: Four approaches
	Slide 9: 1. The INW Approach
	Slide 10: Pseudorandom generators
	Slide 11: The INW PRG
	Slide 12: Expander graphs
	Slide 13: Analysis of the INW PRG
	Slide 14: Regular ROBPs
	Slide 15: Fooling regular ROBPs
	Slide 16: Reingold’s theorem
	Slide 17: 2. The Iterated Restrictions Approach
	Slide 18: The Forbes-Kelley PRG
	Slide 19: Iterated restrictions
	Slide 20: Arbitrary-order ROBPs
	Slide 21: The constant-width case
	Slide 22: Iterated restrictions with early termination
	Slide 23: 3. The Nisan Approach
	Slide 24: Nisan’s PRG
	Slide 25: Good hash functions
	Slide 26: BPL subset or equals SC
	Slide 27: BPL subset or equals L to the 1.5
	Slide 28: 4. The Inverse Laplacian Approach
	Slide 29: Inverse Laplacian of an ROBP
	Slide 30: Non-black-box error reduction
	Slide 31: Weighted PRGs
	Slide 32: Low-error WPRGs
	Slide 33: Hitting sets
	Slide 34: Using hitting sets to derandomize BPL
	Slide 35: Conclusions
	Slide 36: Thank you!

