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Suppose we would like to know whether two vertices, s and ¢, are in the same connected component of a
given simple N-vertex undirected graph G. We are not concerned with time complexity, but we want to keep
our space complexity at a minimum. We can use the following “random walk” approach.

1. Initialize 7 < s.
2. For k=1 to N¢

(a) If ¢ = t, halt and output “YES.”

(b) Pick a neighbor j of ¢ uniformly at random, and set i < j.
3. Output “NO.”

If ¢ is a constant, then this algorithm only uses O(log V) bits of memory above and beyond the space taken
up by the read-only input. If s and ¢ are not in the same connected component, then clearly the algorithm
rejects. What if s and ¢ are in fact in the same connected component?

Theorem 0.1. If s and t are in the same connected component and the constant ¢ is chosen large enough,
then the algorithm described above outputs “YES” with probability at least 0.99.

We will use spectral methods to prove Theorem 0.1. For any directed N-vertex multigraph G, we can
define the transition probability matriz M € [0, 1]V>*N by letting M; ; be the probability of going to j if we
start at ¢ and take a single random step. In other words, M; ; is the number of edges from ¢ to j divided by
the number of outgoing edges of i.

A probability distribution over vertices can be represented by its probability mass function, which we
think of as a row vector 7 € [0, 1]N . If we pick a vertex according to m and then take a single random step,
we arrive at a vertex distributed according to mM.

Let v denote the uniform distribution over vertices, i.e., u = (%, %, ceey %) Observe that if G is regular,
then wu is “stationary,” i.e., uM = u. Intuitively, one might expect that if we start with some distribution 7
and we take a random step, then the resulting distribution 7M ought to be “closer” to u.! The expansion
parameter of G quantifies how quickly we reach u, or in other words, how quickly a random walk in G
“mixes.”

”

Definition 0.2 (Expansion parameter). Let G be a directed regular multigraph on N vertices with transition
probability matrix M € [0,1]V*N. The expansion parameter of G, denoted \(G), is defined as

AMG) = max 7H7TM — ull2

™ r—ulls
where 7 ranges over all probability distributions 7 € [0, 1]%.

There are several other equivalent ways to define the expansion parameter. We will use the following
characterization.

!This isn’t always literally true. Can you think of counterexamples?



Lemma 0.3. Let G be a directed reqular multigraph on N wvertices with transition probability matrix
M € [0, 1)V*N. Then

A(G) = max [oM]l2

v vl
where v ranges over all vectors that are orthogonal to u.

Proof. For any probability vector m, the vector v := m —u is orthogonal to u, and vM = 7 M —uM = M —u.
Therefore, A(G) < max, ||[vM||2/]|v||2. Conversely, if v is orthogonal to u, then there exists € > 0 such that
T :=u + €v is a probability vector, and
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s0 AM(G) > max, [|[vM||2/]|v]|2. O

We always have 0 < A\(G) < 1. In a strongly connected directed regular multigraph with self-loops, there
is a noticeable gap between A\(G) and 1:

Theorem 0.4 (Regular digraphs have nontrivial expansion). Let G = (V, E) be a D-regular strongly connected
directed multigraph on N wvertices in which every vertex has at least one self-loop. Then
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Proof. Let v € RN be any unit vector that is orthogonal to u. Let M be the transition probability matrix of
G, and let v/ = vM. The key is to analyze the quantity 5 > yer(vi — vg-)z. On the one hand, we have
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On the other hand, since v is a unit vector that is orthogonal to u, there exist i.,j. € [IN] such that
|vi, —vj;,| > 1/VN. Since G is strongly connected, there is a path from i, to js, say (i« = io, 1,92, ..., = jx).
Since every vertex has at least one self-loop, we have

r

S 3 -2 Y (i, )+ (W~ vi)?)

(i.j)eE k=1
1 T 2
= 2Dr <Z(Uik—1 - Uik) + (Uik - vlk))
k=1
1 2
=op, Wi — )
1
> .
— 2DNr
Consequently,
1 1 1
/ < 1— < \/1 - <1l 0
Il < \/ 2DN7 ~ 2DN? = 4DN?

2



Now let us use Theorem 0.4 to prove Theorem 0.1.

Proof of Theorem 0.1. Since we only care about what happens in the connected component containing s
and t, we may assume without loss of generality that G is connected. Furthermore, since adding self-loops
can only increase the amount of time it takes for a random walk to reach ¢, we may assume without loss of
generality that G is regular of degree D < N and that every vertex has at least one self-loop. Consequently,
by Theorem 0.4, we have A\(G) < 1 — Q(1/N3).

For any initial probability distribution 7, we have
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Therefore, if we take k random steps, the distribution we reach satisfies
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In particular, the probability of landing at t satisfies
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provided we choose a suitable value k = O(N? - log N).

So, after taking k steps, there is at least a 1/(2N) chance that we arrive at ¢. Furthermore, conditioned
on whatever happened during those first k steps, after we take another k steps, there is again a 1/(2N)
chance that we arrive at ¢t. This continues again and again, so if we take kq steps, then the chance that we
never visit ¢ is at most (1 — 557)? < exp(—¢/(2N)) < 0.01, provided we choose a suitable value ¢ = O(N). O



