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Suppose we would like to know whether two vertices, s and t, are in the same connected component of a
given simple N -vertex undirected graph G. We are not concerned with time complexity, but we want to keep
our space complexity at a minimum. We can use the following “random walk” approach.

1. Initialize i← s.

2. For k = 1 to N c:

(a) If i = t, halt and output “YES.”

(b) Pick a neighbor j of i uniformly at random, and set i← j.

3. Output “NO.”

If c is a constant, then this algorithm only uses O(logN) bits of memory above and beyond the space taken
up by the read-only input. If s and t are not in the same connected component, then clearly the algorithm
rejects. What if s and t are in fact in the same connected component?

Theorem 0.1. If s and t are in the same connected component and the constant c is chosen large enough,
then the algorithm described above outputs “YES” with probability at least 0.99.

We will use spectral methods to prove Theorem 0.1. For any directed N -vertex multigraph G, we can
define the transition probability matrix M ∈ [0, 1]N×N by letting Mi,j be the probability of going to j if we
start at i and take a single random step. In other words, Mi,j is the number of edges from i to j divided by
the number of outgoing edges of i.

A probability distribution over vertices can be represented by its probability mass function, which we
think of as a row vector π ∈ [0, 1]N . If we pick a vertex according to π and then take a single random step,
we arrive at a vertex distributed according to πM .

Let u denote the uniform distribution over vertices, i.e., u = ( 1
N , 1

N , . . . , 1
N ). Observe that if G is regular,

then u is “stationary,” i.e., uM = u. Intuitively, one might expect that if we start with some distribution π
and we take a random step, then the resulting distribution πM ought to be “closer” to u.1 The expansion
parameter of G quantifies how quickly we reach u, or in other words, how quickly a random walk in G
“mixes.”

Definition 0.2 (Expansion parameter). Let G be a directed regular multigraph on N vertices with transition
probability matrix M ∈ [0, 1]N×N . The expansion parameter of G, denoted λ(G), is defined as

λ(G) = max
π

∥πM − u∥2
∥π − u∥2

,

where π ranges over all probability distributions π ∈ [0, 1]N .

There are several other equivalent ways to define the expansion parameter. We will use the following
characterization.

1This isn’t always literally true. Can you think of counterexamples?
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Lemma 0.3. Let G be a directed regular multigraph on N vertices with transition probability matrix
M ∈ [0, 1]N×N . Then

λ(G) = max
v

∥vM∥2
∥v∥2

,

where v ranges over all vectors that are orthogonal to u.

Proof. For any probability vector π, the vector v := π−u is orthogonal to u, and vM = πM −uM = πM −u.
Therefore, λ(G) ≤ maxv ∥vM∥2/∥v∥2. Conversely, if v is orthogonal to u, then there exists ε > 0 such that
π := u+ εv is a probability vector, and

∥πM − u∥2
∥π − u∥2

=
∥uM + εvM − u∥2

∥εv∥2
=
∥vM∥2
∥v∥2

,

so λ(G) ≥ maxv ∥vM∥2/∥v∥2.

We always have 0 ≤ λ(G) ≤ 1. In a strongly connected directed regular multigraph with self-loops, there
is a noticeable gap between λ(G) and 1:

Theorem 0.4 (Regular digraphs have nontrivial expansion). Let G = (V,E) be a D-regular strongly connected
directed multigraph on N vertices in which every vertex has at least one self-loop. Then

λ(G) ≤ 1− 1

O(D ·N2)
.

Proof. Let v ∈ RN be any unit vector that is orthogonal to u. Let M be the transition probability matrix of
G, and let v′ = vM . The key is to analyze the quantity 1

D

∑
(i,j)∈E(vi − v′j)

2. On the one hand, we have

1

D

∑
(i,j)∈E

(vi − v′j)
2 =

1

D

∑
(i,j)∈E

v2i − 2viv
′
j + (v′j)

2

= ∥v∥22 + ∥v′∥22 −
2

D

∑
(i,j)∈E

viv
′
j (Regularity)

= 1 + ∥v′∥22 − 2
∑
j∈[N ]

v′j ·
∑

(i,j)∈E

vi
D

= 1 + ∥v′∥22 − 2
∑
j∈[N ]

v′j · v′j

= 1− ∥v′∥22.

On the other hand, since v is a unit vector that is orthogonal to u, there exist i∗, j∗ ∈ [N ] such that
|vi∗−vj∗ | ≥ 1/

√
N . Since G is strongly connected, there is a path from i∗ to j∗, say (i∗ = i0, i1, i2, . . . , ir = j∗).

Since every vertex has at least one self-loop, we have

1

D

∑
(i,j)∈E

(vi − v′j)
2 ≥ 1

D

r∑
k=1

(
(vik−1

− v′ik)
2 + (v′ik − vik)

2
)

≥ 1

2Dr
·

(
r∑

k=1

(vik−1
− v′ik) + (v′ik − vik)

)2

=
1

2Dr
· (vi∗ − vj∗)

2

≥ 1

2DNr
.

Consequently,

∥v′∥2 ≤
√

1− 1

2DNr
≤
√
1− 1

2DN2
≤ 1− 1

4DN2
.
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Now let us use Theorem 0.4 to prove Theorem 0.1.

Proof of Theorem 0.1. Since we only care about what happens in the connected component containing s
and t, we may assume without loss of generality that G is connected. Furthermore, since adding self-loops
can only increase the amount of time it takes for a random walk to reach t, we may assume without loss of
generality that G is regular of degree D ≤ N and that every vertex has at least one self-loop. Consequently,
by Theorem 0.4, we have λ(G) ≤ 1− Ω(1/N3).

For any initial probability distribution π, we have

∥π − u∥2 =

√√√√ N∑
i=1

(
πi −

1

N

)2

=

√√√√ N∑
i=1

π2
i −

2πi
N

+
1

N2
=

√√√√ 1

N
− 2

N
+

N∑
i=1

π2
i < ∥π∥2 ≤ 1.

Therefore, if we take k random steps, the distribution we reach satisfies

∥πMk − u∥2 ≤ λ(G)k · ∥π − u∥2 ≤ λ(G)k ≤
(
1− 1

O(N3)

)k

≤ exp(−Ω(k/N3).

In particular, the probability of landing at t satisfies

(πMk)t =
1

N
− (u− πMk)t ≥

1

N
− ∥u− πMk∥2

≥ 1

N
− exp(−Ω(k/N3))

≥ 1

2N
,

provided we choose a suitable value k = O(N3 · logN).
So, after taking k steps, there is at least a 1/(2N) chance that we arrive at t. Furthermore, conditioned

on whatever happened during those first k steps, after we take another k steps, there is again a 1/(2N)
chance that we arrive at t. This continues again and again, so if we take kq steps, then the chance that we
never visit t is at most (1− 1

2N )q ≤ exp(−q/(2N)) ≤ 0.01, provided we choose a suitable value q = O(N).
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