
Nisan’s PRG (lecture notes)

Course: Derandomizing Space-Bounded Computation, Winter 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these lecture notes, we study a PRG for space-bounded computation called “Nisan’s PRG” [Nis92].
Nisan’s PRG is similar to the INW PRG, which we studied previously in this course. In terms of parameters,
Nisan’s PRG is not any better than the INW PRG. However, we will see in upcoming classes that the specific
structure of Nisan’s PRG is useful for certain applications. In particular, we will use Nisan’s PRG to prove
BPL ⊆ SC [Nis94] and BPL ⊆ DSPACE((log n)3/2) [SZ99]. For today, we focus on Nisan’s PRG itself.

1 The Pairwise Uniformity Mixing Lemma

Recall that the INW PRG is based on expander graphs and the Expander Mixing Lemma. In a similar
fashion, Nisan’s PRG is based on pairwise uniform hash functions and the Pairwise Uniformity Mixing
Lemma.

Definition 1.1 (Pairwise uniform hash functions). Let Σ be a finite set, and let H be a family of hash
functions h : Σ → Σ. We say that H is pairwise uniform if, for every two distinct x, y ∈ Σ, when we sample
h ∼ H, the pair of outputs (h(x), h(y)) is distributed uniformly over Σ2.

Fact 1.2. For every k ∈ N, there exists an explicit pairwise uniform family H of hash functions h : {0, 1}k →
{0, 1}k such that sampling h ∼ H costs O(k) truly random bits.

Pairwise uniform families of hash functions are also called strongly universal families. For any hash
function h : Σ → Σ, we will use the notation Gh : Σ → Σ2 to denote the PRG

Gh(x) = (x, h(x)).

Lemma 1.3 (Pairwise Uniformity Mixing Lemma). Let H be a pairwise uniform family of hash functions
h : Σ → Σ, and let f : Σ2 → {0, 1} be a two-dimensional combinatorial rectangle, i.e., f(x, y) = fL(x) · fR(y)
for some fL, fR : Σ → {0, 1}. Then for every ε ∈ (0, 1), except with probability E[f]/(ε2 · |Σ|) over the choice
of h ∼ H, the PRG Gh fools f with error ε.

Proof. For any fixed x ∈ Σ, when we choose h ∼ H, the value fR(h(x)) is a Bernoulli random variable, with
expectation Eh[fR(h(x))] = E[fR] and variance Varh[fR(h(x))] = E[fR] · (1− E[fR]) ≤ E[fR]. Now let Z be
the random variable

Z =
∑

x∈f−1
L (1)

fR(h(x)).

By linearity of expectation, we have E[Z] = |f−1
L (1)| · E[fR] = |Σ| · E[f]. Furthermore, the variance of a sum

of pairwise independent variables is the sum of the variances, so Var[Z] ≤ |Σ| · E[f]. Therefore,

Pr
h
[Gh does not fool f with error ε] = Pr

h

[
|Z − E[Z]| > ε · |Σ|

]
≤ Var[Z]

ε2|Σ|2
(Chebyshev’s inequality)

≤ E[f]
ε2 · |Σ|

.

For comparison, recall that the Expander Mixing Lemma says that if H is a λ-spectral expander graph,
then the PRG GH(x, y) := (x,H[x, y]) fools two-dimensional combinatorial rectangles with error λ. The
Pairwise Uniformity Mixing Lemma is “cheaper” in one respect, namely, the seed length of Gh is smaller than

1

the seed length of GH . However, the Pairwise Uniformity Mixing Lemma is “more expensive” in another
respect, namely, we have to use some additional random bits to sample the hash function h ∼ H. This extra
expense is not so bad, because h is “good” with high probability. In contrast, the Expander Mixing Lemma
does not have any concept of “goodness with high probability.”

2 Fooling finite automata

Our analysis of the INW generator was based on decomposing an ROBP as a sum of two-dimensional
combinatorial rectangles. For today’s purposes, instead of ROBPs, it is more convenient to work with the
closely-related finite automaton model. Recall that a w-state automaton over the alphabet Σ is defined by its
transition function M : [w]× Σ → [w]. We will use the square bracket notation M [u, x] to denote the output
of this transition function, in keeping with the notation we used when we were thinking about connectivity
algorithms. Running an automaton for n steps is equivalent to running the n-th power automaton, denoted
Mn : [w]×Σn → [w], for one step. Recall that the n-th power automaton is defined recursively by the formula

M i+1[u, x1x2 . . . xi+1] = M [M i[u, x1 . . . xi], xi+1].

We will often identify a finite automatonM : [w]×Σ → [w] with its transition probability matrixM ∈ [0, 1]w×w.

Definition 2.1. Let M : [w]× Σ → [w], let X be a distribution over Σn, and let M ′
u,v = Pr[Mn[u,X] = v].

We say that X fools M with ℓ1 error ε if ∥Mn −M ′∥1 ≤ ε, where1

∥E∥1 := max
u

∑
v

|Eu,v|.

This is equivalent to saying that for every start state u, the distribution over final states Mn[u,X] is ε-close
in ℓ1 distance to the distribution Mn[u, Y], where Y is sampled uniformly at random from Σn.

Lemma 2.2 (The Pairwise Uniformity Mixing Lemma, applied to finite automata). Let M : [w]× Σ → [w]
be a finite automaton. For every ε ∈ (0, 1), if we sample h ∼ H where H is pairwise uniform, then except

with probability w5

ε2|Σ| , the PRG Gh fools M with ℓ1 error at most ε.

Proof. For any three states u,m, v ∈ [w], we can define a two-dimensional combinatorial rectangle fu,m,v : Σ
2 →

{0, 1} by the formula
fu,m,v(x, y) = 1 ⇐⇒ M [u, x] = m and M [m, y] = v.

Then
M2

u,v =
∑
m

E[fu,m,v],

and if we let M ′
u,v = Prx[M

2[u,Gh(x)] = v], then

M ′
u,v =

∑
m

E
x∈Σ

[fu,m,v(x, h(x))].

By the Pairwise Uniformity Mixing Lemma, combined with the union bound over m ∈ [w] and the triangle
inequality, except with probability Mu,v/(δ

2|Σ|) over the choice of h ∼ H, we have |M2
u,v −M ′

u,v| ≤ wδ. Now
take another union bound over all u, v ∈ [w]: Except with probability w/(δ2|Σ|), we have ∥M2−M ′∥1 ≤ w2δ.
Choosing δ = ε/w2 completes the proof.

1This norm is more commonly denoted ∥E∥∞ or ∥ET ∥1, but note that we think of E as a linear transformation based on left
multiplication, π 7→ πE.

2

3 Nisan’s PRG

Recall that the INW generator applies the Expander Mixing Lemma recursively to construct a PRG with a
good stretch. Similarly, Nisan’s PRG is based on a recursive application of the Pairwise Uniformity Mixing
Lemma. To be more specific, for a sequence of hash functions h1, . . . , hlogn : Σ → Σ, we define an associated
PRG Gh1,...,hlogn

: Σ → Σn by the rules

G()(x) = x

Gh1,...,hlogn
(x) = (G(h1,...,hlogn−1)(x), G(h1,...,hlogn−1)(hlogn(x))).

Lemma 3.1 (Efficiency of Nisan’s PRG). Given the truth tables of h1, . . . , hlogn : Σ → Σ, and given x ∈ Σ,
the output Gh1,...,hlogn

(x) can be computed using O(log(|Σ| · n)) bits of space.

Proof sketch. It is helpful to “unroll” the recursive definition of Gh1,...,hlogn
. As an example, we have

Gh1,h2,h3(x) = (x, h1(x), h2(x), h1(h2(x)), h3(x), h1(h3(x)), h2(h3(x)), h1(h2(h3(x)))).

In general, the i-th output symbol of Gh1,...,hlogn
(x) is a composition of some subset of h1, . . . , hlogn applied

to x. The subset can be efficiently computed (it is essentially given by the binary expansion of the number
i− 1). The lemma follows.

To analyze the correctness of Nisan’s PRG, we introduce the following useful notation, which should be
compared to the “derandomized square” notion that we used to prove that undirected s-t connectivity is in L.

Definition 3.2 (Hash-based derandomized square). Let M : [w]× Σ → [w] and let h : Σ → Σ. We define
Mh : [w]× Σ → [w] by the rule

Mh[u, x] = M2[u,Gh(x)] = M2[u, (x, h(x))].

Furthermore, for a sequence of functions h1, . . . , hlogn : Σ → Σ, we define Mh1,...,hlogn
by

Mh1,...,hlogn
= (· · · (Mh1)h2 · · ·)hlogn

.

Observe that Mh1,...,hlogn
[u, x] = Mn[u,Gh1,...,hlogn

(x)].

Lemma 3.3 (Accumulation of error). Let M : [w]× Σ → [w] be a finite automaton, let n be a power of two,
and let h1, . . . , hlogn : Σ → Σ. Assume that for every i ∈ [log n], the PRG Ghi

fools the automaton Mh1,...,hi−1

with ℓ1 error at most δ. Then the PRG Gh1,...,hlogn
fools M with ℓ1 error at most δ · (n− 1).

Proof. We prove it by induction on n. Let M ′ = Mh1,...,hlogn−1
. Then

∥M ′
hlogn

−Mn∥1 ≤ ∥M ′
hlogn

− (M ′)2∥1 + ∥(M ′)2 −M ′ ·Mn/2∥1 + ∥M ′ ·Mn/2 −Mn∥1
(Triangle inequality)

≤ δ + ∥M ′∥1 · ∥M ′ −Mn/2∥1 + ∥M ′ −Mn/2∥1 · ∥Mn/2∥1
(Assumption; submultiplicativity)

≤ δ + 2∥M ′ −Mn/2∥1
(M ′ and Mn/2 are stochastic matrices)

≤ δ + 2δ · (n/2− 1)

(Induction)

= δ · (n− 1).

Theorem 3.4 (Nisan’s PRG [Nis92]). For every w, n ∈ N and ε ∈ (0, 1), there exists an explicit PRG
G : {0, 1}s → {0, 1}n that fools automata M : [w]×{0, 1} → [w] with ℓ1 error ε, where s = O(log(wn/ε)·log n).

3

Proof sketch. Let H be a pairwise uniform family of hash functions h : Σ → Σ, where Σ = {0, 1}k for a
suitable value k = O(log(wn/ε)). The generator G:

1. Sample h1, h2, . . . , hlogn ∼ H.

2. Sample x ∈ Σ uniformly at random.

3. Let (x(1), . . . , x(n)) = Gh1,...,hlogn
(x).

4. Output the first bit of each symbol, i.e., output (x
(1)
1 , . . . , x

(n)
1).

To prove that this works, let M ′ : [w]× Σ → [w] simulate M by ignoring all but the first bit of the symbol it

sees. By Lemma 2.2 and the union bound, except with probability w5·logn
δ2·2k over the choice of h1, . . . , hlogn,

the PRG Ghi
fools the automaton M ′

h1,...,hi−1
with ℓ1 error at most δ. In this case, by Lemma 3.3, Gh1,...,hlogn

fools M ′ with ℓ1 error at most δ · n. In any case, the ℓ1 error is at most 2. Consequently, G fools M with

ℓ1 error at most δ · n+ 2w5·logn
δ2·2k . To complete the correctness proof, choose δ = ε/(2n), and choose a large

enough k = O(log(wn/ε)).

References

[Nis92] Noam Nisan. “Pseudorandom generators for space-bounded computation”. In: Combinatorica 12.4
(1992), pp. 449–461. issn: 0209-9683. doi: 10.1007/BF01305237.

[Nis94] Noam Nisan. “RL ⊆ SC”. In: Comput. Complexity 4.1 (1994), pp. 1–11. issn: 1016-3328. doi:
10.1007/BF01205052.

[SZ99] Michael Saks and Shiyu Zhou. “BPHSPACE(S) ⊆ DSPACE(S3/2)”. In: J. Comput. System Sci.
58.2 (1999), pp. 376–403. issn: 0022-0000. doi: 10.1006/jcss.1998.1616.

4

https://doi.org/10.1007/BF01305237
https://doi.org/10.1007/BF01205052
https://doi.org/10.1006/jcss.1998.1616

	The Pairwise Uniformity Mixing Lemma
	Fooling finite automata
	Nisan's PRG

