
The derandomized square operation (lecture notes)

Course: Derandomizing Space-Bounded Computation, Winter 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these notes, we prove the following theorem.

Theorem 0.1. The undirected s-t connectivity problem is in L (deterministic log space).

Theorem 0.1 was first proved by Reingold [Rei08], hence it is often called Reingold’s theorem. We will
present an alternative proof due to Rosenman and Vadhan [RV05].

1 A connectivity algorithm based on the INW generator

We begin by arguing that we can make various convenient assumptions without loss of generality.

Definition 1.1 (Consistent labeling). Let G be a D-outregular directed multigraph on the vertex set [N ].
We say that G is labeled if, for every vertex s, the outgoing edges from s have distinct labels in [D]. In this
case, if an edge (s, t) has the label x ∈ [D], then we write G[s, x] = t. That is, G[s, x] is the x-th neighbor of
s. Note that the labeling of G induces a labeling of Gk, namely, Gk+1[s, xy] = G[Gk[s, x], y].

We say that G is consistently labeled if, for every vertex s, the incoming edges at s all have distinct labels.
In other words, G[s, x] = G[t, x] implies s = t. This is only possible if G is D-regular, i.e., every vertex has
D incoming edges as well as D outgoing edges.

Lemma 1.2 (Reducing to the 4-regular consistently-labeled case). There is a deterministic log-space reduction
from the undirected s∗-t∗ connectivity problem to the problem of deciding s∗-t∗ connectivity in a 4-regular
consistently labeled directed multigraph in which every vertex has a self-loop.

Proof. Let G be the given undirected graph. Without loss of generality, we assume that the vertex set is [N ].
For each vertex s ∈ [N ], let the neighbors of s be G[s, 1] < G[s, 2] < · · · < G[s, deg(s)]. Our new graph G′ is
on the vertex set {(s, x) : s ∈ [N ], x ∈ [deg(s)]}. The edge set and the labels are defined by

G′[(s, x), 1] = (s, x)

G′[(s, x), 2] = (s, x+ 1 mod deg(s))

G′[(s, x), 3] = (s, x− 1 mod deg(s))

G′[(s, x), 4] = (G[s, x], y) where G[G[s, x], y] = s.

One can verify that every vertex has in-degree 4 and the labeling is consistent. The new “s∗” is (s∗, 1), and
the new “t∗” is (t∗, 1).

Now let G be a 4-regular consistently labeled directed multigraph on N vertices. Our approach for
solving s∗-t∗ connectivity on G will be to design a pseudorandom generator GEN : {0, 1}r → [4]n for a suitable
n = poly(N). The algorithm: Accept iff there exists a seed x such that Gn[s∗,GEN(x)] = t∗.

The generator GEN is, in fact, the INW generator, with its parameters tweaked so that it has seed length
r = O(logN). In more detail, we have a family of generators GENi : {0, 1}ri → [4]2

i
. We start with r0 = 2

and GEN0(x) = x. Then we define

GENi+1(x, y) = (GENi(x),GENi(Hi[x, y])),

where Hi is an εi-spectral expander on the vertex set {0, 1}ri . Crucially, we will choose relatively “mild”
expanders, i.e., the values εi will not be very small. Let us defer specifying the exact formula for εi until
later, but for now we just mention that we will choose εi = Ω(1) for almost every i.

If there is no path from s∗ to t∗, then clearly the algorithm correctly outputs “no.” The more difficult
case is when there is a path from s∗ to t∗. In this case, by focusing on the connected component containing
s∗ and t∗, we may assume that the graph G is strongly connected. In this case, the algorithm’s correctness
proof is based on analyzing the derandomized square operation, defined next.

1



2 The derandomized square operation

Definition 2.1 (Derandomized square). Let G be a consistently labeled D-regular graph on the vertex set
[N ]. Let H be a labeled d-regular graph on the vertex set [D]. The derandomized square G s○H is a labeled
(Dd)-outregular graph on the vertex set [N ] given by

(G s○H)[s, (x, y)] = G2[s, (x,H[x, y])].

In Definition 2.1, we assume that G is consistently labeled. One can define the derandomized square
without this assumption, but the “correct” definition is a bit subtle. Fortunately, the derandomized squaring
property preserves consistent labeling, so we do not need to worry about graphs that are not consistently
labeled.

Proposition 2.2 (Derandomized squaring preserves consistent labeling). If G is consistently labeled, then
G s○H is consistently labeled.

Proof. If (G s○H)[s, (x, y)] = (G s○H)[s′, (x, y)], then G[t,H[x, y]] = G[t′, H[x, y]], where t = G[s, x] and
t′ = G[s′, x]. But G is consistently labeled, so t = t′ and hence s = s′.

There is a close connection between the derandomized square operation and the INW generator. To see
it, let Gi be the graph Gi[s, x] = G2i [s,GENi(x)]. Then looking back through the definitions, we see that for
every i, we have

Gi+1 = Gi s○Hi.

From here, our analysis will be similar to our analysis of random walks in undirected graphs: we will show
that λ(Gi) rapidly goes to zero. The idea is that G s○H approximates G2. The true square G2 satisfies
λ(G2) = λ(G)2. Now we show that the derandomized square G s○H satisfies a bound that is nearly as good.

Theorem 2.3 (Derandomized square approximates true square). Let G be any consistently labeled D-regular
graph on the vertex set [N ]. Let H be an ε-spectral expander on the vertex set [D], i.e., λ(H) ≤ ε. Then

λ(G s○H) ≤ (1− ε) · λ(G)2 + ε ≤ max{λ(G)1.5, 4ε}.

To prove the theorem, let us adopt the convenient convention of identifying each graph with its transition
probability matrix. Let’s think about what happens if we start at a vertex s ∈ [N ] and take a random step
in the graph G s○H. We can break the random step into five substeps:

[N ] → [N ]× [D] → [N ]× [D] → [N ]× [D] → [N ]× [D] → [N ].

The five substeps are as follows.

1. Step 1: Pick a random edge label x ∈ [D] and move to (s, x). The corresponding transition probability
matrix L ∈ RD×ND applies the map πL = π ⊗ u.

2. Step 2: Move to (s′, x) = (G[s, x], x). Since G is consistently labeled, the corresponding transition
“probability” matrix A ∈ RND×ND is a permutation matrix, i.e., πA just permutes the coordinates of π.

3. Step 3: Pick a random edge label y ∈ [d] and move to (s′, x′) = (s′, H[x, y]). The corresponding
transition probability matrix is the tensor product IN ⊗H.

4. Step 4: Move to (t, x′) = (G[s′, x′], x′). This is another application of A.

5. Step 5: Delete the second coordinate, i.e., move to t ∈ [N ]. The corresponding transition probability
matrix P ∈ RND×D applies the map (πP )t =

∑
x′ π(t,x′).

2

https://en.wikipedia.org/wiki/Kronecker_product


Thus, the transition probability matrix of G s○H is given by

G s○H = LA(IN ⊗H)AP. (1)

The next step is to apply the so-called Expander Decomposition Lemma.

Lemma 2.4 (Expander Decomposition Lemma). Let H be the transition probability matrix of an ε-spectral
expander on the vertex set [D]. Let JD denote the D ×D matrix where every entry is 1/D. There exists a
matrix E ∈ RD×D such that ∥E∥op ≤ 11 and H = (1− ε) · JD + ε · E.

Proof. Let E = (1/ε) · (H − (1− ε) · JD). Let v be any unit vector, and decompose it as v = v∥ + v⊥, where
v∥ is parallel to u and v⊥ is perpendicular to u. Then

∥vE∥22 = ε−2 · ∥vH − (1− ε) · vJD∥22 = ε−2 · ∥εv∥ + v⊥H∥22 = ε−2 ·
(
∥εv∥∥22 + ∥v⊥H∥22

)
≤ ∥v∥∥22 + ∥v⊥∥22
= 1.

Proof of Theorem 2.3. Applying the Expander Decomposition Lemma to Eq. (1), we get

G s○H = (1− ε) · LA(IN ⊗ JD)AP + ε · LA(IN ⊗ E)AP.

The first term is the transition probability matrix of G s○ J , i.e., the true square G2. Therefore, if v is any
unit vector orthogonal to the uniform distribution, we have

∥v(G s○H)∥2 = ∥(1− ε) · vG2 + ε · vLA(IN ⊗ E)AP∥2
≤ (1− ε) · λ(G)2 + ε · ∥LA(IN ⊗ E)AP∥op
≤ (1− ε) · λ(G)2 + ε · ∥L∥op · ∥A∥op · ∥IN ⊗ E∥op · ∥A∥op · ∥P∥op.

Let us calculate each operator norm term.

• If v is any unit vector, then ∥vL∥2 = ∥v ⊗ u∥2 = ∥v∥2 · ∥u∥2 = 1/
√
D, so ∥L∥op = 1/

√
D.

• Since A is a permutation matrix, we have ∥A∥op = 1.

• The operator norm of a tensor product is the product of the operator norms, so ∥IN ⊗ E∥op =
∥IN∥op · ∥E∥op ≤ 1.

• If v is any unit vector, then ∥vP∥22 =
∑

t(
∑

x′ v(t,x′))
2 ≤ D

∑
t,x′ v2(t,x′) = D, so ∥P∥op ≤

√
D.

It follows that
λ(G s○H) ≤ (1− ε) · λ(G)2 + ε.

Finally, to prove that (1− ε) · λ(G)2 + ε ≤ max{λ(G)1.5, 4ε}, let λ = λ(G) for brevity’s sake, and split into
two cases. For the first case, suppose ε is small, namely

ε ≤ λ1.5 · 1−
√
λ

1− λ2
.

Then

(1− ε) · λ2 + ε = λ2 + ε · (1− λ2) ≤ λ2 + λ1.5 · (1−
√
λ) = λ1.5.

Now, for the second case, suppose ε is large, namely

ε > λ1.5 · 1−
√
λ

1− λ2
= λ1.5 · 1−

√
λ

(1− λ)(1 + λ)
= λ1.5 · 1−

√
λ

(1−
√
λ)(1 +

√
λ)(1 + λ)

≥ λ1.5

4
.

1I.e., ∥vE∥2 ≤ ∥v∥2 for every v ∈ RD.

3



Then
(1− ε) · λ2 + ε < (1− ε) · (4ε)4/3 + ε.

It is clear that the expression above is O(ε). To prove the specific bound of 4ε, let p = 1 − ε ∈ [0, 1]. By
taking a derivative with respect to p, one sees that p3 − p4 is maximized at p = 3/4, i.e., p3 · (1− p) ≤ 33/44.
Taking a cube root, we get 44/3 · p · (1 − p)1/3 ≤ 3, i.e., 44/3 · (1 − ε) · ε1/3 ≤ 3. Finally, adding one and
multiplying by ε gives us (1− ε) · (4ε)4/3 + ε ≤ 4ε.

Proof of Theorem 0.1. Let G0 be a 4-regular strongly connected directed multigraph in which every vertex
has at least one self-loop. Our analysis of random walks on undirected graphs shows that there is a value
λ0 = 1 − 1/O(N2) such that λ(G0) ≤ λ0. Define λi = λ1.5i

0 and εi =
1
4 · λ1.5

i . We use εi as our expansion
parameter for the expander graph Hi that we use to construct the PRG GENi+1. Our final generator is
GEN = GENi∗ , where i∗ is the first value such that λi∗ < 1/N .

Define the graphs G1, G2, . . . as in Section 2, namely Gi[s, x] = G2i [s,GENi(x)]. By Theorem 2.3 and
induction, we have λ(Gi) ≤ λi. The fact that λ(Gi∗) < 1/N implies that every two vertices in Gi∗ are
neighbors, hence our algorithm is correct.

Now let us analyze the seed length of the PRG. Since λi = λ1.5i
0 ≤ exp(−1.5i/O(N2)), we have i∗ =

O(logN). Furthermore, we can choose Hi to be an explicit expander with deg(Hi) = poly(1/εi). Therefore,
the seed length of GEN is given by

si∗ = O

(
i∗∑
i=1

log(4/λ1.5i

0 )

)
= O

(
i∗ + log(1/λ0) ·

i∗∑
i=1

1.5i

)
= O(i∗ + log(1/λ0) · 1.5i∗)

= O(i∗ + log(1/λi∗))

= O(logN).

Consequently, our algorithm only uses O(logN) bits of space.

4


	A connectivity algorithm based on the INW generator
	The derandomized square operation

