
BPL ⊆ SC and the Saks-Zhou theorem (lecture notes)

Course: Derandomizing Space-Bounded Computation, Winter 2025, University of Chicago
Instructor: William Hoza (williamhoza@uchicago.edu)

In these lecture notes, we sketch the proofs of the following two classic theorems.

Theorem 0.1 ([Nis94]). BPL ⊆ SC.1 To be more specific, every language in BPL can be decided by a
deterministic algorithm that uses polynomial time and O(log2 n) bits of space.

Theorem 0.2 ([SZ99]). BPL ⊆ DSPACE((log n)3/2).

If we insist on a polynomial-time simulation, then the O(log2 n) space bound in Theorem 0.1 is still the
best bound known today. If we don’t worry about time complexity, the space bound in Theorem 0.2 has only
been slightly improved, namely to O((log n)3/2/

√
log logn) [Hoz21].

The proofs of Theorems 0.1 and 0.2 both use Nisan’s PRG, which we studied previously. In these lecture
notes, we continue using the same notation to reason about Nisan’s PRG.

1 BPL ⊆ SC: Searching for good hash functions

When we analyzed Nisan’s PRG, we showed that for any automaton M , if we pick a hash function h from a
pairwise uniform family, then with high probability, h is “good” for M , meaning that Gh fools M . To prove
BPL ⊆ SC, we will show that we can actually find a good hash function:

Lemma 1.1 (Finding a good hash function). Suppose we are given the truth table of a finite automaton
M : [w]× {0, 1}k → [w]. Using O(k + logw) bits of space, it is possible to deterministically find the O(k)-bit
description of an explicit hash function h : {0, 1}k → {0, 1}k such that Gh fools M with ℓ1 error at most
w2.5 · 2−k/2.

Proof sketch. Let H be an explicit pairwise uniform family of hash functions. For each h in H, define

eh = max
u∈[w]

∑
v∈[w]

∣∣∣ |{(x, y) ∈ {0, 1}2k : M2[u, xy] = v}| − |Σ| · |{x ∈ {0, 1}k : Mh[u, x] = v|
∣∣∣.

Observe that eh is an integer between 0 and w ·22k. For any fixed h, the value eh can be computed and stored in
O(k+logw) bits of space by straightforward counting. The algorithm outputs the h that minimizes eh, which
can be found by exhaustive search over all h. Our previous analysis of a random h ∼ H (“Lemma 2.2” in the
lecture notes on Nisan’s PRG) implies that the best hash function h satisfies ∥M2 −Mh∥1 ≤ w2.5 · 2−k/2.

Corollary 1.2 (Finding a sequence of good hash functions). Suppose we are given the truth table of a finite
automaton M : [w]× {0, 1}k → [w] and a power of two n ∈ N. Using O(k · log n+ logw) bits of space and
poly(n,w, 2k) time, it is possible to deterministically find the O(k)-bit descriptions of explicit hash functions
h1, . . . , hlogn such that Gh1,...,hlogn

fools M with ℓ1 error at most w2.5 · 2−k/2 · n.

Proof sketch. Suppose we have already found and stored h1, . . . , hi−1. To find hi, we apply Lemma 1.1 to the
automaton Mh1,...,hi−1

. Each time the Lemma 1.1 algorithm asks about some transition Mh1,...,hi+1
[u, x], we

compute it by feeding Gh1,...,hi+1
(x) into M . Our previous analysis of the efficiency of Nisan’s PRG (“Lemma

3.1” in the lecture notes on Nisan’s PRG) implies that this process takes only O(k + log n) bits of space,
hence poly(2k, n) time. The Lemma 1.1 algorithm takes O(k + logw) bits of space, hence poly(2k, w) time.
Finally, our analysis of the accumulation of error in Nisan’s PRG (“Lemma 3.3” in the lecture notes on
Nisan’s PRG) implies that Gh1,...,hlogn

fools M with ℓ1 error at most w2.5 · 2−k/2 · (n− 1).

1By definition, a language is in SC if it can be decided by a deterministic algorithm that simultaneously uses polynomial time
and polylogarithmic space.

1

Corollary 1.2 readily implies BPL ⊆ SC. Some details follow.

Proof of Theorem 0.1. Given an instance x of some language in BPL, in deterministic log-space, we can
compute the truth table of a finite automaton M : [w]× {0, 1} → [w] that describes how the BPL algorithm’s
configuration updates when it reads a single random bit. Here w = poly(|x|). We can ensure that the start
state is 1, the unique accepting state is w, and the unique rejecting state is w − 1. We can also ensure that
M [w, 0] = M [w, 1] = w and M [w − 1, 0] = M [w − 1, 1] = w − 1.

Let n be a bound on the number of random bits that the BPL algorithm uses on x. For example, we can
always take n = w. To decide whether x is in the language, it suffices to estimate the (1, w) entry of Mn to
within additive error ε = 0.1.

We begin by artificially enlarging the alphabet of M , producing an automaton M ′ : [w]×{0, 1}k → [w] for
a suitable k = O(log(wn/ε)). Next, we use Corollary 1.2 to deterministically find hash functions h1, . . . , hlogn
such that Gh1,...,hlogn

fools M ′ with ℓ1 error at most w2.5 · 2−k/2 · n, which is at most ε provided we choose a
suitable value k = O(log(wn/ε)).

Finally, we compute (M ′)n[1, Gh1,...,hlogn
(y)] for all y ∈ {0, 1}k. Altogether, this process uses O(k ·

log n + logw) = O(log(wn/ε) · log n) bits of space, which is O(log2 |x|) if n = w and ε = 0.1, and it uses
poly(n,w, 2k) = poly(nw/ε) time, which is poly(|x|) if n = w and ε = 0.1.

2 BPL ⊆ DSPACE((log n)3/2): Reusing hash functions

What goes wrong if we sample just one hash function h in Nisan’s PRG and reuse it in every round of the
recursion? It is tempting to think that the PRG should still work by a simple union bound. For any fixed
M , it is indeed true that Gh fools M with high probability. However, if we reuse h in the first and second
rounds of the recursion, then in the second round of the recursion, we want Gh to fool Mh. Obviously, Mh is
correlated with h, and hence there is no reason to think that Gh is likely to fool Mh.

Despite this issue, Saks and Zhou managed to figure out a way to reuse hash functions in Nisan’s PRG.
Their idea is that maybe Mh is not so correlated with h after all, because Mh ≈ M2 with high probability,
and M2 is independent of h. To make this idea make sense, Saks and Zhou modify the algorithm, not just the
analysis. The key new ingredient is a randomized procedure for modifying Mh so that it still approximates
M2, but now it is essentially independent of h.

We first define a procedure for modifying a single entry p̂ in the transition probability matrix of Mh in
order to destroy the correlation with h. For p̂ ∈ [0, 1], d ∈ N, and r ∈ [2d], we define

p̂⊖d r = 2−d · ⌊2d ·max{0, p̂− r · 2−2d}⌋.

We think of r as randomness. The ⊖ operation begins by randomly perturbing p̂; we subtract a random small
amount (at most 2−d) without letting it become negative. Then it truncates the perturbed value, retaining d
bits of precision. The following two propositions show that if p̂ ≈ p, then p̂⊖d r ≈ p as well, and furthermore,
applying the ⊖ operation effectively destroys any information that is stored in p̂ rather than in p.

Proposition 2.1 (⊖ doesn’t introduce much error). For every p̂ ∈ [0, 1], d ∈ N, and r ∈ [2d], we have

p̂⊖d r ∈ [p̂− 2−d+1, p̂] ∩ [0, 1].

Proof. This is immediate from the definition.

Proposition 2.2 (⊖ destroys information). For every p ∈ [0, 1] and d ∈ N, there exists rbad ∈ [2d] such that
for every p̂ ∈ [0, 1] and every r ∈ [2d] \ {rbad}, if |p− p̂| < 2−2d−1, then p̂⊖d r = p⊖d r.

Proof. Let rbad be the unique value such that p − r · 2−2d is at distance less than 2−2d−1 from an integer
multiple of 2−d, or let rbad = 1 if no such value exists. If r ≠ rbad and |p − p̂| < 2−2d−1, then there is no
integer multiple of 2−d between p− r · 2−2d and p̂− r · 2−2d, hence p̂⊖d r = p⊖d r.

2

Now we extend the ⊖ operation to operate on automata. Suppose M̂ : [w]× Σ → [w] is an automaton.

For d ∈ N and r ∈ [2d], we define an automaton (M̂ ⊖d r) : [w]× [2d] → [w] as follows.

1. Let A ∈ [0, 1]w×w be the transition probability matrix of M̂ .

2. Define B ∈ [0, 1]w×w by Bu,v = Au,v ⊖d r. Note that B is substochastic, i.e., the entries of each row
add up to at most one, and furthermore each entry of B is an integer multiple of 2−d.

3. Define C ∈ [0, 1]w×w by increasing the last entry of each row of B so that C is stochastic, i.e., the
entries of each row add up to exactly one. Note that each entry of C is still an integer multiple of 2−d.

4. Let (M̂ ⊖d r)[u, x] = v if

Cu,1 + · · ·+ Cu,v−1 <
x

2d
≤ Cu,1 + · · ·+ Cu,v.

Note that the transition probability matrix of M̂ ⊖d r is precisely the matrix C.

The following two propositions show that if M̂ approximates M , then applying the ⊖ operation to M̂
produces another automaton that approximates M , and in the process, it destroys any information that is
stored in M̂ rather than in M .

Proposition 2.3 (⊖ doesn’t introduce much error when applied to automata). For every automaton

M̂ : [w]× Σ → [w], every d ∈ N, and every r ∈ [2d], we have

∥M̂ − (M̂ ⊖k r)∥1 ≤ 2−d+2 · w.

Proof. This is immediate from Proposition 2.1.

Proposition 2.4 (⊖ destroys information when applied to automata). For every automaton M : [w]×Σ → [w]

and d ∈ N, there exists Rbad ⊆ [2d] of size at most w2 such that for every M̂ : [w] × Σ′ → [w] and every

r ∈ [2d] \Rbad, if ∥M − M̂∥max < 2−2d−1, then M̂ ⊖d r = M ⊖d r.

Proof. This is immediate from Proposition 2.2 (let Rbad contain each rbad associated with each entry of the
transition probability matrix of M).

Furthermore, M̂ ⊖d r is efficiently computable:

Proposition 2.5 (M̂ ⊖d r is efficiently computable). Given the truth table of M̂ : [w]× {0, 1}k → [w], given

d ∈ N, and given r ∈ [2d], it is possible to compute the truth table of M̂ ⊖d r using O(k + d+ logw) bits of
space.

Proposition 2.5 is more or less immediate from the definitions; we omit the tedious proof. Now we present
the Saks-Zhou algorithm. Suppose we are given M : [w]× {0, 1} → [w], n ∈ N, and ε ∈ (0, 1). Our goal is
to approximate the transition probability matrix of Mn, to within ℓ1 error ε. Let H be a pairwise uniform
family of hash functions h : {0, 1}k → {0, 1}k for a suitable value k = O(log(wn/ε)). Let s, t ∈ N such that
st = log n. Sample h1, . . . , hs ∼ H, and let h⃗ = (h1, . . . , hs). Sample r1, . . . , rt ∈ [2d] independently and
uniformly at random for a suitable value d ≤ k, and let r⃗ = (r1, . . . , rt). Define the following sequence of
automata:

M̂ (0) = M

M̂ (i) = M̂
(i−1)

h⃗
⊖d ri.

(Note: The alphabet of M̂ (i−1) is {0, 1} or {0, 1}d, but we can treat it as an automaton over the alphabet
{0, 1}k that simply ignores some of the bits of each symbol it reads. This allows us to apply the hash
functions h⃗.) Crucially, we reuse the same vector of hash functions h⃗ in each round. Finally, the output of

the Saks-Zhou algorithm consists of the transition probability matrix of M̂ (t).

3

Proposition 2.6 (Efficiency of the Saks-Zhou algorithm). The Saks-Zhou algorithm uses O(log(wn/ε)·(s+t))
bits of space and O(log(wn/ε) · (s+ t)) bits of randomness.

We omit the tedious proof.

Proposition 2.7 (Correctness of the Saks-Zhou algorithm). Except with probability w2 · t · 2−d + w5 · log n ·
2O(d+s) · 2−k over the choices of h⃗ and r⃗, we have

∥M̂ (t) −Mn∥1 ≤ 4nw · 2−d.

Proof. Purely for the sake of analysis, we define the following sequence of automata:

M (0) = M

M (i) = (M (i−1))2
s ⊖d ri.

By Proposition 2.4, the probability that ri falls into the Rbad set the automaton (M (i−1))2
s
is at most

w2 · t · 2−d. Fix any r1, . . . , rt such that this does not occur.
By our analysis from last time (see “Lemma 2.2” and “Lemma 3.3” in the lecture notes on Nisan’s PRG),

except with probability w5 · log n · 2O(d+s) · 2−k over the choice of h⃗, we have ∥M (i−1)

h⃗
− (M (i−1))2

s∥1 < 2−2d−1

for every i ∈ [t]. Assume that this occurs.

Under these assumptions, let us show by induction on i that M̂ (i) = M (i) for every i ∈ [t]. In the base

case i = 0, this is true by definition. Now assume by induction that M̂ (i−1) = M (i−1). Our assumption

about h⃗ tells us that ∥(M (i−1))2
s − M̂

(i−1)

h⃗
∥1 < 2−2d−1. Consequently, our assumption about ri, together

with Proposition 2.4, tells us that M̂ (i) = M (i).
To complete the proof, we show by induction on i that ∥M (i) −M2si∥1 ≤ 2si−1

2s−1 · 2−d+2 · w. In the base
case i = 0, this is trivial. For i > 0, we have

∥M (i) −M2si∥1 ≤ ∥M (i) − (M (i−1))2
s∥1 + ∥(M (i−1))2

s −M2si∥1.

The first term is at most 2−d+2 ·w by Proposition 2.3. The second term is at most 2s · ∥M (i−1) −M2s·(i−1)∥1,
because

∥Am −Bm∥1 ≤
m∑
i=1

∥Am−i+1Bi−1 −Am−iBi∥1 =
m∑
i=1

∥Am−i · (A−B) ·Bi−1∥1

≤
m∑
i=1

∥Am−i∥1 · ∥A−B∥1 · ∥Bi−1∥1

≤ m · ∥A−B∥1

for any stochastic matrices A,B. Therefore, by induction, we get

∥M (i) −M2si∥1 ≤

(
2s · 2

s·(i−1) − 1

2s − 1
+ 1

)
· 2−d+2 · w =

2si − 1

2s − 1
· 2−d+2 · w.

To complete the proof of Theorem 0.2, the idea is to set s = t =
√
log n, w = n, and ε = 0.1, and try all

possible settings of the O((log n)3/2) many random bits.

References

[Hoz21] William M. Hoza. “Better Pseudodistributions and Derandomization for Space-Bounded Computa-
tion”. In: Proceedings of the 25th International Conference on Randomization and Computation
(RANDOM). Vol. 207. 2021, 28:1–28:23. isbn: 978-3-95977-207-5. doi: 10.4230/LIPIcs.APPROX/
RANDOM.2021.28.

4

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28

[Nis94] Noam Nisan. “RL ⊆ SC”. In: Comput. Complexity 4.1 (1994), pp. 1–11. issn: 1016-3328. doi:
10.1007/BF01205052.

[SZ99] Michael Saks and Shiyu Zhou. “BPHSPACE(S) ⊆ DSPACE(S3/2)”. In: J. Comput. System Sci.
58.2 (1999), pp. 376–403. issn: 0022-0000. doi: 10.1006/jcss.1998.1616.

5

https://doi.org/10.1007/BF01205052
https://doi.org/10.1006/jcss.1998.1616

	BPL SC: Searching for good hash functions
	BPL DSPACE((n)3/2): Reusing hash functions

