
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Deciding a language in time 𝑇

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝑇: ℕ → 0, ∞ be a function

• Definition: We say that 𝑌 can be decided in time 𝑇 if there exists a Turing

machine 𝑀 such that

• 𝑀 decides 𝑌, and

• For every 𝑛 ∈ ℕ and every 𝑤 ∈ 0, 1 𝑛, the running time of 𝑀 on 𝑤 is at most 𝑇 𝑛

3

The complexity class P

• Definition: For any function 𝑇: ℕ → 0, ∞ , we define

TIME 𝑇 = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time 𝑂 𝑇

• Definition:

P = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time poly 𝑛

= ራ

𝑘=1

∞

TIME 𝑛𝑘

• “Polynomial time”

4

P: Our model of tractability

• Let 𝑌 ⊆ 0, 1 ∗

• If 𝑌 ∈ P, then we will consider 𝑌 “tractable”

• If 𝑌 ∉ P, then we will consider 𝑌 “intractable”

5

Which problems

can be solved

through computation?

6

Which languages are in P?

7

Example 1: Primality testing

• PRIMES = 𝐾 ∶ 𝐾 is a prime number

• Proof attempt: For 𝑀 = 2, 3, … , 𝐾 − 1, check if 𝐾/𝑀 is an integer.

• That proof is not correct. The algorithm runs in poly 𝐾 time, but our time

budget is only poly 𝑛 where 𝑛 = 𝐾 ≈ log 𝐾!

• The theorem is true, but the proof is beyond the scope of this course

8

Theorem: PRIMES ∈ P

Example 2: The EVENPAL∗ problem

• Let EVENPAL = 𝑥 ∈ PALINDROMES ∶ 𝑥 is even

• Let EVENPAL∗ = 𝑥1𝑥2 … 𝑥𝑘 ∶ 𝑘 ≥ 0 and 𝑥1, … , 𝑥𝑘 ∈ EVENPAL

• Example: 100111 ∈ EVENPAL∗

• 𝑥1 = 1001 and 𝑥2 = 11

• Example: 1010 ∉ EVENPAL∗

9

Deciding EVENPAL∗ in polynomial time

• EVENPAL∗ = 𝑥1𝑥2 … 𝑥𝑘 ∶ 𝑘 ≥ 0 and 𝑥1, … , 𝑥𝑘 ∈ EVENPAL

• Proof attempt 1: Given 𝑤 ∈ 0, 1 ∗, try all possible decompositions

𝑤 = 𝑥1𝑥2 … 𝑥𝑘

• Time complexity Ω 2𝑛 …

10

Theorem: EVENPAL∗ ∈ P

Deciding EVENPAL∗ in polynomial time

• EVENPAL∗ = 𝑥1𝑥2 … 𝑥𝑘 ∶ 𝑘 ≥ 0 and 𝑥1, … , 𝑥𝑘 ∈ EVENPAL

• Proof: We’ll use an algorithm technique called “dynamic programming”

• Key observation: If 𝑤 ∈ {0, 1}∗ ∖ 𝜖 , then 𝑤 ∈ EVENPAL∗ if and only if there

exist 𝑢 ∈ EVENPAL∗ and 𝑦 ∈ EVENPAL such that 𝑤 = 𝑢𝑦 and 𝑢 < 𝑤

11

Theorem: EVENPAL∗ ∈ P

Deciding EVENPAL∗ in polynomial time

• Let 𝑤 be the input, 𝑤 = 𝑤1𝑤2 … 𝑤𝑛, where 𝑤𝑖 ∈ {0, 1}

• Plan: For each 𝑖 ∈ {0, 1, … , 𝑛}, we will compute a Boolean value 𝑏𝑖 that

indicates whether 𝑤1𝑤2 … 𝑤𝑖 ∈ EVENPAL∗

12

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 … 𝑤𝑖 ∈ EVENPAL, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

What should 𝑏0 be?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: It depends on 𝑤

B: False

D: It’s not well-defined

A: True

Deciding EVENPAL∗ in polynomial time

13

• TM implementation: Store 𝑏𝑖 in 𝑤𝑖’s cell, and write # in 𝑤𝑗’s cell

0 0 1
⊔

0 0 1 0 1 1 1 0𝑤1, … , 𝑤𝑛 →

𝑏1, … , 𝑏𝑛 → F T F F F T F F F

0 1 1 1 0 1 1 0
F F F F F F

#

Current job: Check whether this substring is in EVENPAL

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 … 𝑤𝑖 ∈ EVENPAL, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

Deciding EVENPAL∗ in polynomial time

14

• Outer loop (𝑖) does 𝑂 𝑛 iterations; inner loop (𝑗) does 𝑂 𝑛 iterations

• We can check whether 𝑤𝑗 … 𝑤𝑖 ∈ EVENPAL in time 𝑂 𝑛2

• Total time complexity: 𝑂 𝑛4 = poly 𝑛

1) Let 𝑏0 = True

2) For 𝑖 = 1 to 𝑛:

a) If there exists 𝑗 < 𝑖 such that 𝑏𝑗−1 is True and 𝑤𝑗 … 𝑤𝑖 ∈ EVENPAL, then set 𝑏𝑖 = True

b) Otherwise, set 𝑏𝑖 = False

3) Accept if 𝑏𝑛 is True; reject if 𝑏𝑛 is False

Time complexity: Theory vs. practice

• Caution: It takes time to move the head to a desired location!

• E.g., consider an algorithm for deciding PALINDROMES:

15

← 𝑛 iterations

← 𝑂 1 time per iteration “in practice,”

 but not on a Turing machine!

Given an array of bits 𝑥:

1) For 𝑖 = 1 to 𝑛:

a) If 𝑥[𝑖] ≠ 𝑥[𝑛 − 𝑖], reject

2) Accept

Is the Turing machine model a good model?

• We defined P to be the set of languages that can be decided in

polynomial time on a Turing machine

• OBJECTION: “Time complexity on a Turing machine doesn’t match time

complexity in practice, so we should use a more powerful model of

computation.”

16

Multi-tape Turing machines, revisited

• Let 𝑌 ⊆ 0, 1 ∗, let 𝑘 be a positive integer, and let 𝑇: ℕ → ℕ

17

Theorem: If there is a 𝑘-tape Turing machine that decides 𝑌 with

time complexity 𝑇 𝑛 , then there is a 1-tape Turing machine that

decides 𝑌 with time complexity 𝑂 𝑇(𝑛)2 .

Efficiently simulating 𝑘 tapes using one tape

• Proof sketch (1 slide): For simplicity, assume 𝑇 𝑛 ≥ 𝑛

• Recall: To simulate step 𝑖, we scan

back and forth over 𝑛 + 2𝑖 cells of

the tape

• Simulating one step of the 𝑘-tape

machine takes 𝑂 𝑛 + 𝑇 𝑛 steps

• Overall time complexity: 𝑇 𝑛 ⋅ 𝑂 𝑛 + 𝑇 𝑛 = 𝑂 𝑇 𝑛 2

18

1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

0

⊔

Robustness of P

• Conclusion: We could define P using one-tape Turing machines or using

multi-tape Turing machines

• Either way, we get the exact same set of languages

• Another example: The “word RAM” model

19

Word RAM model (RAM = Random Access Machine)

• (This model will not be on homework exercises or exams)

• A word RAM program consists of a list of instructions

• First few instruction types:

• 𝑅𝑖 ← 𝑅𝑗 or 𝑅𝑖 ← 𝑐 where 𝑖, 𝑗, 𝑐 ∈ ℕ

• 𝑅𝑖 ← 𝑅𝑗 op 𝑅𝑘 where op ∈

• IF 𝑅𝑖 GOTO 𝑘

• ACCEPT or REJECT

20

+, -, *, /, %, ==, <, >, &&, ||, &, |, ^, <<, >>

𝑅𝑖 is a “global
variable” of type
unsigned int

(The details are not completely
standardized. This is just one
reasonable version of the model)

Word RAM model

• Each 𝑅𝑖 holds a 𝑘-bit “word” representing a number in 0, 1, … , 2𝑘 − 1

• 𝑘 is called the “word size”

• In practice, maybe 𝑘 = 64

• In theory, we think of 𝑘 as “large enough” and growing with 𝑛

• Operations on words take 𝑂 1 time, unlike TM model!

21

Word RAM model

• There is also a large memory

(an array of words)

• Instructions:

• 𝑅𝑖 ← MEMORY 𝑅𝑗

• MEMORY 𝑅𝑖 ← 𝑅𝑗

• Instantly access any desired location in memory, unlike the TM model!

22

010 110 101 110 110 111 000

110

101

110

MEMORY

𝑅1

𝑅2

𝑅3

Load/Store
Control

Word RAM model

• Let the input be 𝑤 ∈ 0, 1 𝑛

• Initially, 𝑅0 = 𝑛 and MEMORY has 𝑛 cells, with MEMORY 𝑖 = 𝑤𝑖

• A special instruction “MALLOC” extends MEMORY, creating one new cell

• If 𝑛 ≥ 2𝑘, or if 𝑐 ≥ 2𝑘 for some constant 𝑐 in the program, or if

MEMORY ever has more than 2𝑘 cells, then the program crashes

• Reading to/writing from a nonexistent MEMORY cell does nothing

23

The version of the word RAM model described here is based on the lecture notes for CS 1200 at
Harvard: https://harvard-cs-1200.github.io/cs1200/

https://harvard-cs-1200.github.io/cs1200/

Word RAM model

• Let 𝑌 ⊆ 0, 1 ∗, let 𝑃 be a word RAM program, and let 𝑇: ℕ → ℕ

• We say that 𝑃 decides 𝑌 within time 𝑇 if:

• For every 𝑤 ∈ 𝑌, for every 𝑘 ∈ ℕ, if we run 𝑃 on input 𝑤 with word size 𝑘, then

𝑃 crashes or accepts within 𝑇 𝑤 steps

• For every 𝑤 ∉ 𝑌, for every 𝑘 ∈ ℕ, if we run 𝑃 on input 𝑤 with word size 𝑘, then

𝑃 crashes or rejects within 𝑇 𝑤 steps

• For every 𝑤 ∈ 0, 1 ∗, there exists 𝑘 ∈ ℕ such that if we run 𝑃 on input 𝑤 with

word size 𝑘, then 𝑃 halts without crashing.

24

The version of the word RAM model described here is based on the lecture notes for CS 1200 at
Harvard: https://harvard-cs-1200.github.io/cs1200/

https://harvard-cs-1200.github.io/cs1200/

Word RAM model

• Word RAM time complexity closely matches time complexity “in

practice” on ordinary computers

• Some version of the word RAM model is typically assumed (implicitly

or explicitly) in algorithms courses and the computing industry

25

Robustness of P

• Let 𝑌 ⊆ 0, 1 ∗

• Proof omitted

26

Theorem: If there is a word RAM program that decides 𝑌 in time poly 𝑛 ,

then there is a Turing machine that decides 𝑌 in time poly 𝑛 .

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Deciding a language in time cap T
	Slide 4: The complexity class P
	Slide 5: P: Our model of tractability
	Slide 6: Which problems can be solved through computation?
	Slide 7: Which languages are in P?
	Slide 8: Example 1: Primality testing
	Slide 9: Example 2: The superscript base , EVENPAL , end base , to the asterisk operator problem
	Slide 10: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 11: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 12: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 13: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 14: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 15: Time complexity: Theory vs. practice
	Slide 16: Is the Turing machine model a good model?
	Slide 17: Multi-tape Turing machines, revisited
	Slide 18: Efficiently simulating k tapes using one tape
	Slide 19: Robustness of P
	Slide 20: Word RAM model (RAM = Random Access Machine)
	Slide 21: Word RAM model
	Slide 22: Word RAM model
	Slide 23: Word RAM model
	Slide 24: Word RAM model
	Slide 25: Word RAM model
	Slide 26: Robustness of P

