CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Which problems
can be solved

through computation?

Deciding a language in time T

letY € {0,1} andlet T:N — [0, o) be a function

* Definition: We say that ¥ can be decided in time T if there exists a Turing
machine M such that

e M decides Y, and

* Foreveryn € N and every w € {0, 1}", the running time of M on w is at most T (n)

|

The complexity class P @

* Definition: For any function T: N — [0, o), we define

TIME(T) = {Y € {0,1}* : Y can be decided in time O(T)}
* Definition:

P={Y €{0,1}* : Y can be decided in time poly(n)}

= U TIME(n*)
k=1

e “Polynomial time”

P: Our model of tractability

* LetY € {0,1}
e IfY € P, then we will consider Y “tractable”

e IfY & P, then we will consider Y “intractable”

Which problems
can be solved

through computation?

Which languages are in P?

Example 1: Primality testing

* PRIMES = {(K) : K is a prime number}

Theorem: PRIMES € P

* Proof attempt: For M = 2,3, ...,K — 1, check if K/M is an integer.

* That proof is not correct. The algorithm runs in poly(K) time, but our time

budget is only poly(n) where n = |[(K)| = log K

* The theorem is true, but the proof is beyond the scope of this course

Example 2: The EVENPAL" problem

* Let EVENPAL = {x € PALINDROMES : |x| is even}
* Let EVENPAL" = {x;x, ...x} : k = 0 and x4, ..., x, € EVENPAL}

 Example: 100111 € EVENPAL"

* x; = 1001 and x, =11

 Example: 1010 € EVENPAL"

Deciding EVENPAL" in polynomial time

e EVENPAL* = {x;x, ...x; : k = 0and x4, ..., x;, € EVENPAL}

Theorem: EVENPAL® € P

* Proof attempt 1: Given w € {0, 1}*, try all possible decompositions
W = X1x2 ...Xk

* Time complexity Q(2™)... &

10

Deciding EVENPAL" in polynomial time

e EVENPAL* = {x;x, ...x; : k = 0and x4, ..., x;, € EVENPAL}

Theorem: EVENPAL® € P

* Proof: We'll use an algorithm technique called “dynamic programming”

* Key observation: If w € {0,1}* \ {€}, then w € EVENPAL" if and only if there
exist u € EVENPAL" and y € EVENPAL such that w = uy and |u| < |w|

11

Deciding EVENPAL" in polynomial time

* Let w be the input, w = wyw, ...w,,, where w; € {0, 1}
* Plan: Foreachi € {0, 1, ..., n}, we will compute a Boolean value b; that

indicates whether w;w, ...w; € EVENPAL"

1) Letby =Tr < What should b, be? >
2) Fori=1ta
< A: True >< B: False >
a) Ifthere ; = True
b) Otherw < C: It depends on w >< D: It’s not well-defined >

3) Acceptif by

Respond at PollEv.com/whoza or text “whoza” to 22333

by, ..

T T
.y Wy = 0]0]1|0|0|f1

Deciding EVENPAL" in polynomial time

1) Let by = True

2) Fori=1ton:
a) |If there exists j < isuch that b;_; is True and w; ...w; € EVENPAL, then set b; = True
b) Otherwise, set b; = False

3) Acceptif b,, is True; reject if b,, is False

* TM implementation: Store b; in w;’s cell, and write # in w;’s cell

Current job: Check whether this substring is in EVENPAL

~

_n
-
T
-
-
T

,bp = L]l F

f#

F

O |
JAN .

Deciding EVENPAL" in polynomial time

1) Let by = True
2) Fori=1ton:

a) If there exists j < i such that b;_; is True and w; ...w; € EVENPAL, then set b; = True

b) Otherwise, set b; = False

3) Acceptif b,, is True; reject if b,, is False

* Outer loop (i) does O(n) iterations; inner loop (j) does O(n) iterations
* We can check whether w; ...w; € EVENPAL in time 0 (n*)

* Total time complexity: 0(n*) = poly(n) «

14

Time complexity: Theory vs. practice

e A Caution: It takes time to move the head to a desired location!

* E.g., consider an algorithm for deciding PALINDROMES:

Given an array of bits x:
1) Fori =1ton:
a) Ifx|i] # x[n —i], reject

2) Accept

< n iterations

« 0(1) time per iteration “in practice,”

but not on a Turing machine!

15

s the Turing machine model a good model?

* We defined P to be the set of languages that can be decided in

polynomial time on a Turing machine

* OBJECTION: “Time complexity on a Turing machine doesn’t match time
complexity in practice, so we should use a more powerful model of

computation.”

16

Multi-tape Turing machines, revisited

e LetY € {0, 1}, let k be a positive integer, and let T: N —» N

Theorem: If there is a k-tape Turing machine that decides Y with
time complexity T'(n), then there is a 1-tape Turing machine that

decides Y with time complexity O (T (n)?%).

17

Efficiently simulating k tapes using one tape

* Proof sketch (1 slide): For simplicity, assume T(n) > n

* Recall: To simulate step i, we scan

back and forth over n + 2i cells of

the tape A

b=

e Simulating one step of the k-tape f
machine takes O(n + T(n)) steps

» Overall time complexity: T(n) - 0(n + T(n)) = 0(T(n)?)

Robustness of P

* Conclusion: We could define P using one-tape Turing machines or using

multi-tape Turing machines
* Either way, we get the exact same set of languages

* Another example: The “word RAM” model

19

Word RAM model (RAM = Random Access Machine)

* (This model will not be on homework exercises or exams)

A word RAM program consists of a list of instructions

.] _ R; is a “global
* First few instruction types: variable” of type

Q unsigned int
. 0O
* R <« RjorR; < cwhereli,jc€N

.Rl(_R]OkaWhereOPE{+/ 4 *I /I %r ==, <, >, &&, 'II &y |/ A/ <<y >>}
e |F Ri GOTO k (The details are not completely

standardized. This is just one

e ACCEPT or RE]ECT reasonable version of the model)

20

Word RAM model

* Each R; holds a k-bit “word” representing a number in {0, 1, ..., 2% — 1}
* k is called the “word size”

* In practice, maybe k = 64

* In theory, we think of k as “large enough” and growing with n

* Operations on words take O(1) time, unlike TM model!

21

MEMORY

Word RAM model f

010 110 101 110 110 111 000

* There is also a large memory N | t
(an array of words) T i
Control < . R, 101 | ———
. . ; ! Load/Store
* Instructions: Ry | 110 .
N :

* R; « MEMORY|R;|

» MEMORY[R,] « R

* Instantly access any desired location in memory, unlike the TM model!

22

The version of the word RAM model described here is based on the lecture notes for CS 1200 at
Harvard: https://harvard-cs-1200.github.i0/cs1200/

Word RAM model

* Let the input be w € {0, 1}"
* Initially, Ry = n and MEMORY has n cells, with MEMORY|[i] = w;
* A special instruction “MALLOC” extends MEMORY, creating one new cell

e If n > 2%, orif c > 2% for some constant c in the program, or if

MEMORY ever has more than 2% cells, then the program crashes

* Reading to/writing from a nonexistent MEMORY cell does nothing

23

https://harvard-cs-1200.github.io/cs1200/

The version of the word RAM model described here is based on the lecture notes for CS 1200 at

d:https://harvard-cs-1200.github.i0/cs1200/
Word RAM model ™

e letY € {0, 1}, let P be a word RAM program, and let T: N —» N

 We say that P decides Y within time T if:

 Foreveryw €Y, forevery k € N, if we run P on input w with word size k, then

P crashes or accepts within T(|w|) steps

* Foreveryw €Y, for every k € N, if we run P on input w with word size k, then

P crashes or rejects within T(|w|) steps

* Foreveryw € {0, 1}*, there exists k € N such that if we run P on input w with

word size k, then P halts without crashing.

24

https://harvard-cs-1200.github.io/cs1200/

Word RAM model

* Word RAM time complexity closely matches time complexity “in

practice” on ordinary computers

* Some version of the word RAM model is typically assumed (implicitly

or explicitly) in algorithms courses and the computing industry

25

Robustness of P

. LetY € {0, 1}*

Theorem: If there is a word RAM program that decides Y in time poly(n),

then there is a Turing machine that decides Y in time poly(n).

* Proof omitted

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Deciding a language in time cap T
	Slide 4: The complexity class P
	Slide 5: P: Our model of tractability
	Slide 6: Which problems can be solved through computation?
	Slide 7: Which languages are in P?
	Slide 8: Example 1: Primality testing
	Slide 9: Example 2: The superscript base , EVENPAL , end base , to the asterisk operator problem
	Slide 10: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 11: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 12: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 13: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 14: Deciding superscript base , EVENPAL , end base , to the asterisk operator in polynomial time
	Slide 15: Time complexity: Theory vs. practice
	Slide 16: Is the Turing machine model a good model?
	Slide 17: Multi-tape Turing machines, revisited
	Slide 18: Efficiently simulating k tapes using one tape
	Slide 19: Robustness of P
	Slide 20: Word RAM model (RAM = Random Access Machine)
	Slide 21: Word RAM model
	Slide 22: Word RAM model
	Slide 23: Word RAM model
	Slide 24: Word RAM model
	Slide 25: Word RAM model
	Slide 26: Robustness of P

