CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza




Which problems
can be solved

through computation?



Deciding a language in time T

*letY € {0,1}* andlet T:N — [0, o) be a function

* Definition: We say that ¥ can be decided in time T if there exists a Turing
machine M such that

e M decides Y, and

* Foreveryn € N and every w € {0, 1}", the running time of M on w is at most T (n)



|

The complexity class P @

* Definition: For any function T: N — [0, o), we define

TIME(T) = {Y € {0,1}* : Y can be decided in time O(T)}
* Definition:

P={Y €{0,1}* : Y can be decided in time poly(n)}

= U TIME(n*)
k=1

e “Polynomial time”



P: Our model of tractability

* LetY € {0,1}
e IfY € P, then we will consider Y “tractable”

e IfY & P, then we will consider Y “intractable”



Which problems
can be solved

through computation?



Which languages are in P?



Example 1: Primality testing

* PRIMES = {(K) : K is a prime number}

Theorem: PRIMES € P

* Proof attempt: For M = 2,3, ...,K — 1, check if K/M is an integer.

* That proof is not correct. The algorithm runs in poly(K) time, but our time

budget is only poly(n) where n = |[(K)| = log K

* The theorem is true, but the proof is beyond the scope of this course



Example 2: The EVENPAL" problem

* Let EVENPAL = {x € PALINDROMES : |x| is even}
* Let EVENPAL" = {x;x, ...x} : k = 0 and x4, ..., x, € EVENPAL}

 Example: 100111 € EVENPAL"

* x; = 1001 and x, =11

 Example: 1010 € EVENPAL"



Deciding EVENPAL" in polynomial time

e EVENPAL* = {x;x, ...x; : k = 0and x4, ..., x;, € EVENPAL}

Theorem: EVENPAL® € P

* Proof attempt 1: Given w € {0, 1}*, try all possible decompositions
W = X1x2 ...Xk

* Time complexity Q(2™)... &

10



Deciding EVENPAL" in polynomial time

e EVENPAL* = {x;x, ...x; : k = 0and x4, ..., x;, € EVENPAL}

Theorem: EVENPAL® € P

* Proof: We'll use an algorithm technique called “dynamic programming”

* Key observation: If w € {0,1}* \ {€}, then w € EVENPAL" if and only if there
exist u € EVENPAL" and y € EVENPAL such that w = uy and |u| < |w|
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Deciding EVENPAL" in polynomial time

* Let w be the input, w = wyw, ...w,,, where w; € {0, 1}
* Plan: Foreachi € {0, 1, ..., n}, we will compute a Boolean value b; that

indicates whether w;w, ...w; € EVENPAL"

1) Letby =Tr < What should b, be? >
2) Fori=1ta
< A: True >< B: False >
a) Ifthere ; = True
b) Otherw < C: It depends on w >< D: It’s not well-defined >

3) Acceptif by

Respond at PollEv.com/whoza or text “whoza” to 22333
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Deciding EVENPAL" in polynomial time

1) Let by = True

2) Fori=1ton:
a) |If there exists j < isuch that b;_; is True and w; ...w; € EVENPAL, then set b; = True
b) Otherwise, set b; = False

3) Acceptif b,, is True; reject if b,, is False

* TM implementation: Store b; in w;’s cell, and write # in w;’s cell

Current job: Check whether this substring is in EVENPAL
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Deciding EVENPAL" in polynomial time

1) Let by = True
2) Fori=1ton:

a) If there exists j < i such that b;_; is True and w; ...w; € EVENPAL, then set b; = True

b) Otherwise, set b; = False

3) Acceptif b,, is True; reject if b,, is False

* Outer loop (i) does O(n) iterations; inner loop (j) does O(n) iterations
* We can check whether w; ...w; € EVENPAL in time 0 (n*)

* Total time complexity: 0(n*) = poly(n) «
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Time complexity: Theory vs. practice

e A Caution: It takes time to move the head to a desired location!

* E.g., consider an algorithm for deciding PALINDROMES:

Given an array of bits x:
1) Fori =1ton:
a) Ifx|i] # x[n —i], reject

2) Accept

< n iterations

« 0(1) time per iteration “in practice,”

but not on a Turing machine!
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s the Turing machine model a good model?

* We defined P to be the set of languages that can be decided in

polynomial time on a Turing machine

* OBJECTION: “Time complexity on a Turing machine doesn’t match time
complexity in practice, so we should use a more powerful model of

computation.”

16



Multi-tape Turing machines, revisited

e LetY € {0, 1}, let k be a positive integer, and let T: N —» N

Theorem: If there is a k-tape Turing machine that decides Y with
time complexity T'(n), then there is a 1-tape Turing machine that

decides Y with time complexity O (T (n)?%).

17



Efficiently simulating k tapes using one tape

* Proof sketch (1 slide): For simplicity, assume T(n) > n

* Recall: To simulate step i, we scan

back and forth over n + 2i cells of

the tape A

b=

e Simulating one step of the k-tape f
machine takes O(n + T(n)) steps

» Overall time complexity: T(n) - 0(n + T(n)) = 0(T(n)?)



Robustness of P

* Conclusion: We could define P using one-tape Turing machines or using

multi-tape Turing machines
* Either way, we get the exact same set of languages

* Another example: The “word RAM” model
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Word RAM model (RAM = Random Access Machine)

* (This model will not be on homework exercises or exams)

A word RAM program consists of a list of instructions

. ] _ R; is a “global
* First few instruction types: variable” of type

Q unsigned int
. 0O
* R <« RjorR; < cwhereli,jc€N

.Rl(_R]OkaWhereOPE{+/ 4 *I /I %r ==, <, >, &&, 'II &y |/ A/ <<y >>}
e |F Ri GOTO k (The details are not completely

standardized. This is just one

e ACCEPT or RE]ECT reasonable version of the model)
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Word RAM model

* Each R; holds a k-bit “word” representing a number in {0, 1, ..., 2% — 1}
* k is called the “word size”

* In practice, maybe k = 64

* In theory, we think of k as “large enough” and growing with n

* Operations on words take O(1) time, unlike TM model!
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MEMORY

Word RAM model f

010 110 101 110 110 111 000

* There is also a large memory N | t
(an array of words) T i
Control < . R, 101 | ———
. . ; ! Load/Store
* Instructions: Ry | 110 .
N :

* R; « MEMORY|R;|

» MEMORY[R,] « R

* Instantly access any desired location in memory, unlike the TM model!
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The version of the word RAM model described here is based on the lecture notes for CS 1200 at
Harvard: https://harvard-cs-1200.github.i0/cs1200/

Word RAM model

* Let the input be w € {0, 1}"
* Initially, Ry = n and MEMORY has n cells, with MEMORY|[i] = w;
* A special instruction “MALLOC” extends MEMORY, creating one new cell

e If n > 2%, orif c > 2% for some constant c in the program, or if

MEMORY ever has more than 2% cells, then the program crashes

* Reading to/writing from a nonexistent MEMORY cell does nothing
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https://harvard-cs-1200.github.io/cs1200/

The version of the word RAM model described here is based on the lecture notes for CS 1200 at

d:https://harvard-cs-1200.github.i0/cs1200/
Word RAM model ™

e letY € {0, 1}, let P be a word RAM program, and let T: N —» N

 We say that P decides Y within time T if:

 Foreveryw €Y, forevery k € N, if we run P on input w with word size k, then

P crashes or accepts within T(|w|) steps

* Foreveryw €Y, for every k € N, if we run P on input w with word size k, then

P crashes or rejects within T(|w|) steps

* Foreveryw € {0, 1}*, there exists k € N such that if we run P on input w with

word size k, then P halts without crashing.
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https://harvard-cs-1200.github.io/cs1200/

Word RAM model

* Word RAM time complexity closely matches time complexity “in

practice” on ordinary computers

* Some version of the word RAM model is typically assumed (implicitly

or explicitly) in algorithms courses and the computing industry
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Robustness of P

. LetY € {0, 1}*

Theorem: If there is a word RAM program that decides Y in time poly(n),

then there is a Turing machine that decides Y in time poly(n).

* Proof omitted
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