CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

1

Which problems can be solved

through computation?

Deciding a language in time T

- Let $Y \subseteq \{0, 1\}^*$ and let $T: \mathbb{N} \to [0, \infty)$ be a function
- **Definition:** We say that *Y* can be decided in time *T* if there exists a Turing machine *M* such that
 - *M* decides *Y*, and
 - For every $n \in \mathbb{N}$ and every $w \in \{0, 1\}^n$, the running time of M on w is at most T(n)

The complexity class P

• **Definition:** For any function $T: \mathbb{N} \to [0, \infty)$, we define

 $TIME(T) = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time } O(T)\}$

• Definition:

 $P = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time poly}(n)\}$

$$= \bigcup_{k=1}^{\infty} \text{TIME}(n^k)$$

• "Polynomial time"

P: Our model of tractability

- Let $Y \subseteq \{0, 1\}^*$
- If $Y \in P$, then we will consider Y "tractable"
- If $Y \notin P$, then we will consider Y "intractable"

Which problems

can be solved

through computation?

Which languages are in P?

Example 1: Primality testing

• PRIMES = { $\langle K \rangle$: *K* is a prime number}

Theorem: PRIMES \in P

- **Proof attempt:** For M = 2, 3, ..., K 1, check if K/M is an integer.
- That proof is not correct. The algorithm runs in poly(K) time, but our time budget is only poly(n) where $n = |\langle K \rangle| \approx \log K!$
- The theorem is true, but the proof is beyond the scope of this course

Example 2: The EVENPAL* problem

- Let EVENPAL = { $x \in PALINDROMES : |x|$ is even}
- Let EVENPAL^{*} = { $x_1x_2 \dots x_k : k \ge 0$ and $x_1, \dots, x_k \in EVENPAL$ }
- Example: $100111 \in EVENPAL^*$
 - $x_1 = 1001$ and $x_2 = 11$
- Example: $1010 \notin EVENPAL^*$

• EVENPAL^{*} = { $x_1x_2 \dots x_k : k \ge 0$ and $x_1, \dots, x_k \in EVENPAL$ }

Theorem: $EVENPAL^* \in P$

• **Proof attempt 1**: Given $w \in \{0, 1\}^*$, try all possible decompositions

$$w = x_1 x_2 \dots x_k$$

• Time complexity $\Omega(2^n)$... 😪

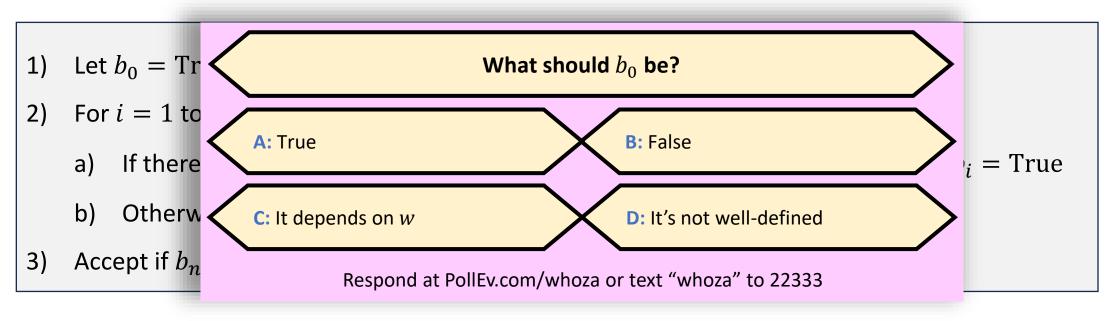
• EVENPAL^{*} = { $x_1x_2 \dots x_k : k \ge 0$ and $x_1, \dots, x_k \in EVENPAL$ }

Theorem: $EVENPAL^* \in P$

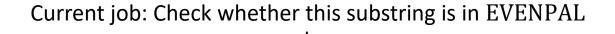
- Proof: We'll use an algorithm technique called "dynamic programming"
- Key observation: If $w \in \{0, 1\}^* \setminus \{\epsilon\}$, then $w \in \text{EVENPAL}^*$ if and only if there exist $u \in \text{EVENPAL}^*$ and $y \in \text{EVENPAL}$ such that w = uy and |u| < |w|

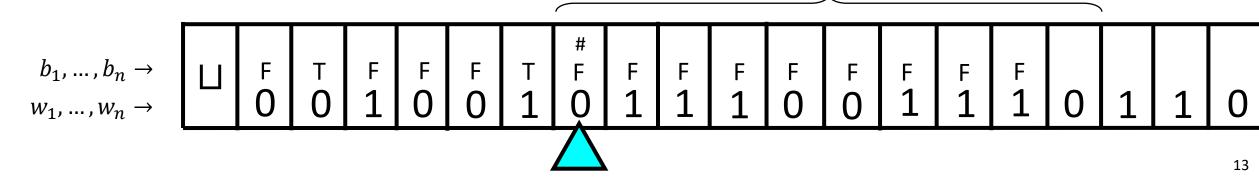
- Let *w* be the input, $w = w_1 w_2 ... w_n$, where $w_i \in \{0, 1\}$
- Plan: For each $i \in \{0, 1, ..., n\}$, we will compute a Boolean value b_i that

indicates whether $w_1 w_2 \dots w_i \in \text{EVENPAL}^*$



- 1) Let $b_0 = \text{True}$
- 2) For i = 1 to n:
 - a) If there exists j < i such that b_{j-1} is True and $w_j \dots w_i \in EVENPAL$, then set $b_i = True$
 - b) Otherwise, set b_i = False
- 3) Accept if b_n is True; reject if b_n is False
- TM implementation: Store b_i in w_i 's cell, and write # in w_j 's cell





- 1) Let $b_0 = \text{True}$
- 2) For i = 1 to n:
 - a) If there exists j < i such that b_{j-1} is True and $w_j \dots w_i \in EVENPAL$, then set $b_i = True$
 - b) Otherwise, set b_i = False
- 3) Accept if b_n is True; reject if b_n is False
- Outer loop (i) does O(n) iterations; inner loop (j) does O(n) iterations
- We can check whether $w_i \dots w_i \in \text{EVENPAL}$ in time $O(n^2)$
- Total time complexity: $O(n^4) = poly(n)$

Time complexity: Theory vs. practice

- **Caution:** It takes time to move the head to a desired location!
- E.g., consider an algorithm for deciding PALINDROMES:

```
Given an array of bits x:
```

```
1) For i = 1 to n:
```

a) If
$$x[i] \neq x[n-i]$$
, reject

2) Accept

- $\leftarrow n$ iterations
- $\leftarrow O(1)$ time per iteration "in practice," but not on a Turing machine!

Is the Turing machine model a good model?

- We defined P to be the set of languages that can be decided in polynomial time on a Turing machine
- **OBJECTION:** "Time complexity on a Turing machine doesn't match time complexity in practice, so we should use a more powerful model of computation."

Multi-tape Turing machines, revisited

• Let $Y \subseteq \{0, 1\}^*$, let k be a positive integer, and let $T: \mathbb{N} \to \mathbb{N}$

Theorem: If there is a k-tape Turing machine that decides Y with time complexity T(n), then there is a 1-tape Turing machine that decides Y with time complexity $O(T(n)^2)$.

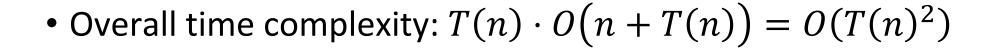
Efficiently simulating k tapes using one tape

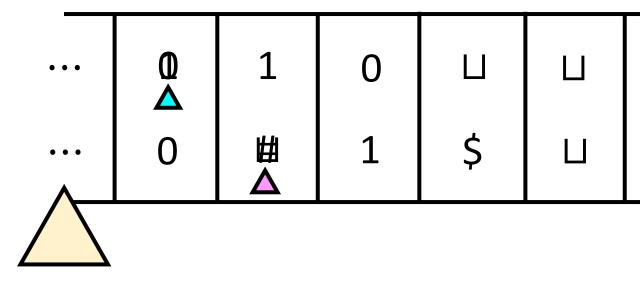
- **Proof sketch (1 slide):** For simplicity, assume $T(n) \ge n$
- Recall: To simulate step *i*, we scan

back and forth over n + 2i cells of

the tape

• Simulating one step of the k-tape machine takes O(n + T(n)) steps





Robustness of P

- Conclusion: We could define P using one-tape Turing machines or using multi-tape Turing machines
- Either way, we get the exact same set of languages
- Another example: The "word RAM" model

Word RAM model (RAM = <u>Random Access Machine</u>)

- (This model will not be on homework exercises or exams)
- A word RAM program consists of a list of instructions
- First few instruction types:
 - $R_i \leftarrow R_j$ or $R_i \leftarrow c$ where $i, j, c \in \mathbb{N}$
 - $R_i \leftarrow R_j \text{ op } R_k \text{ where op } \in \{+, -, *, /, \$, ==, <, >, \&\&, ||, \&, |, ^, <<, >> \}$
 - IF R_i GOTO k
 - ACCEPT or REJECT

(The details are not completely standardized. This is just one reasonable version of the model)

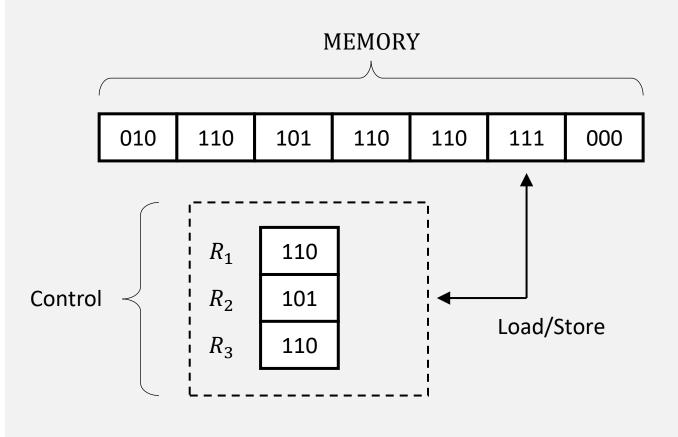
 R_i is a "global

variable" of type

unsigned int

- Each R_i holds a k-bit "word" representing a number in $\{0, 1, \dots, 2^k 1\}$
- k is called the "word size"
- In practice, maybe k = 64
- In theory, we think of k as "large enough" and growing with n
- Operations on words take O(1) time, unlike TM model!

- There is also a large memory (an array of words)
- Instructions:
 - $R_i \leftarrow \text{MEMORY}[R_j]$
 - MEMORY[R_i] $\leftarrow R_j$



• Instantly access any desired location in memory, unlike the TM model!

- Let the input be $w \in \{0, 1\}^n$
- Initially, $R_0 = n$ and MEMORY has n cells, with MEMORY $[i] = w_i$
- A special instruction "MALLOC" extends MEMORY, creating one new cell
- If $n \ge 2^k$, or if $c \ge 2^k$ for some constant c in the program, or if MEMORY ever has more than 2^k cells, then the program crashes
- Reading to/writing from a nonexistent MEMORY cell does nothing

- Let $Y \subseteq \{0, 1\}^*$, let P be a word RAM program, and let $T: \mathbb{N} \to \mathbb{N}$
- We say that *P* decides *Y* within time *T* if:
 - For every $w \in Y$, for every $k \in \mathbb{N}$, if we run P on input w with word size k, then P crashes or accepts within T(|w|) steps
 - For every $w \notin Y$, for every $k \in \mathbb{N}$, if we run P on input w with word size k, then P crashes or rejects within T(|w|) steps
 - For every $w \in \{0, 1\}^*$, there exists $k \in \mathbb{N}$ such that if we run P on input w with word size k, then P halts without crashing.

- Word RAM time complexity closely matches time complexity "in practice" on ordinary computers
- Some version of the word RAM model is typically assumed (implicitly or explicitly) in algorithms courses and the computing industry

Robustness of P

• Let $Y \subseteq \{0,1\}^*$

Theorem: If there is a word RAM program that decides Y in time poly(n), then there is a Turing machine that decides Y in time poly(n).

• Proof omitted