
1

CMSC 28100

Introduction to 
Complexity Theory

Spring 2025
Instructor: William Hoza



Which problems

can be solved

through computation?
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Applying our theory

• Question: In the year 1988, were there 50 U.S. senators, every pair of 

which voted the same way more than 50% of the time?

• Step 1: Gather data
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Agreement graph

• Step 2: Construct “agreement graph”

• Edge 𝑢, 𝑣  means that senators 𝑢 and 𝑣

agreed on most votes

• Question: Are there 50 vertices in this graph that are all adjacent to 

one another?
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The clique problem

• A 𝑘-clique in a graph 𝐺 = 𝑉, 𝐸  is a set 𝑆 ⊆ 𝑉 such that 𝑆 = 𝑘 and 

every two vertices in 𝑆 are connected by an edge

• Example: This graph has a 4-clique
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Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: If 𝐺 has fewer than 𝑘
2

 edges,

then 𝐺 does not have a 𝑘-clique

A: Every vertex in a 𝑘-clique has
degree at least 𝑘 − 1

B: A single graph might have
many 𝑘-cliques

D: If every vertex has degree at
least 𝑘 − 1, then 𝐺 has a 𝑘-clique



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?
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a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

• Yes! 𝑆 = {b, d, e, g}
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a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

Is CLIQUE decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: It depends on whether 𝐺  is an
adjacency matrix or adjacency list

B: No

D: It’s not a language, so the
question doesn’t make sense

A: Yes



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Claim: CLIQUE is decidable

• Proof sketch: Given 𝐺, 𝑘  where 𝐺 = 𝑉, 𝐸 , try all possible subsets 𝑆 ⊆ 𝑉

• Check whether 𝑆 = 𝑘 

• Check whether 𝑢, 𝑣 ∈ 𝐸 for every 𝑢, 𝑣 ∈ 𝑆 such that 𝑢 ≠ 𝑣

• If we find a 𝑘-clique, accept; otherwise, reject.
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The clique problem

• Question: In the year 1988, were there 50 U.S. senators, every pair of 

which voted the same way more than 50% of the time?

• Step 1: Gather data 

• Step 2: Construct agreement graph 

• Step 3: Apply CLIQUE algorithm
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Our algorithm is so slow that it’s worthless

• Question: In the year 1988, were there 50 U.S. senators, every pair 

of which voted the same way more than 50% of the time?

• Checking all possible sets of senators would take longer than a 

lifetime!

• One begins to feel that CLIQUE might as well be undecidable!
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Which problems

can be solved

through computation?
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Refining our model

• Our model so far: Decidable vs. undecidable

• Now we will refine our model to account for the fact that we only have a 

limited amount of time (and other resources)

• “Complexity theory” vs. “Computability theory”
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Analogy: Gravity

• Physics 101: “Gravity is a constant downward 

force of 9.8 N/kg”

• Physics 102: Newton’s Universal Law of 

Gravitation: 𝐹 = 𝐺 ⋅
𝑚1⋅𝑚2

𝑟2
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Theory vs. practice

• Disclaimer: Our theoretical model will still not be perfectly accurate!

• Occasionally, we might categorize a problem as “tractable” even 

though it is not actually “solvable in practice”

• Other times, we might categorize a problem as “intractable” even 

though it is actually “solvable in practice”
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Theory vs. practice

• Physics analogy: Newton’s Universal Law of Gravitation

is great, but it does not correctly predict Mercury’s

motion around the sun!

• “…all models are wrong, but some are useful.” –George Box

• Even though our model of tractability will not be 100% accurate, it will still 

give us real insights into the nature of computation
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Time complexity

• Let 𝑀 be a Turing machine

• The time complexity of 𝑀 is a function 𝑇𝑀: ℕ → ℕ defined as follows:

𝑇𝑀 𝑛 = max
𝑤∈ 0,1 𝑛

running time of 𝑀 on 𝑤

• We are focusing on the worst-case 𝑛-bit input
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Scaling behavior

• We will mainly focus on the limiting behavior of 𝑇𝑀 𝑛  as 𝑛 → ∞

• How “quickly” does the time complexity 𝑇𝑀 𝑛  increase when we 

increase the input length 𝑛?
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Asymptotic analysis
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Asymptotic analysis

• Two possible time complexities:

𝑇1 𝑛 = 3𝑛2 + 14

𝑇2 𝑛 = 2𝑛2 + 64𝑛 + 𝑛

• When 𝑛 is large, the leading 𝐶 ⋅ 𝑛2 term dominates

• We will ignore the low-order terms and the leading coefficient 𝐶

• We focus on the 𝑛2 part (“quadratic time”)
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Big-𝑂 notation

• 3𝑛2 + 14 and 2𝑛2 + 64𝑛 + 𝑛  are both “𝑂 𝑛2 ”

• More generally, let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• Definition: We say that 𝑇 is 𝑂 𝑓  if there exist 𝐶, 𝑛∗ ∈ ℕ such that for 

every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛

• Notation: 𝑇 ∈ 𝑂 𝑓  or 𝑇 ≤ 𝑂 𝑓  or 𝑇 = 𝑂 𝑓
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Big-𝑂 notation examples

• 3𝑛2 + 14 is 𝑂 𝑛2

• 3𝑛2 + 14 is 𝑂 𝑛2 + 𝑛

• 3𝑛2 + 14 is 𝑂 𝑛3

• 3𝑛2 + 14 is not 𝑂 𝑛1.9

21



Big-Ω and big-Θ

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is Ω 𝑓  if there exist 𝑐 ∈ 0, 1  and 𝑛∗ ∈ ℕ such that 

for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛

• We say that 𝑇 is Θ 𝑓  if 𝑇 is 𝑂 𝑓  and 𝑇 is Ω 𝑓
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Big-Ω and big-Θ examples

• 0.1𝑛2 + 14 is Ω 𝑛2  and Ω 𝑛 , but not Ω 𝑛3

• 0.1𝑛2 + 14 is Θ 𝑛2  and Θ 𝑛2 + 2𝑛1.4 , but not Θ 𝑛
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Let 𝑇 𝑛 = 23𝑛+4. Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 𝑇(𝑛) is Θ 23𝑛

A: 𝑇 𝑛  is Ω 2𝑛 B: 𝑇 𝑛  is 2Θ 𝑛

D: 𝑇 𝑛  is 𝑂 2𝑛



Little-𝑜 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is 𝑜 𝑓  if for every 𝑐 ∈ 0, 1 , there exists 𝑛∗ ∈ ℕ such 

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 < 𝑐 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= 0
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Little-𝜔 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is 𝜔 𝑓  if for every 𝐶 ∈ ℕ, there exists 𝑛∗ ∈ ℕ such 

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 > 𝐶 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= ∞
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Summary of asymptotic notation

Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛  grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛  is at most 𝐶 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛  and 𝑓 𝑛  grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛  is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛  grows more quickly than 𝑓 𝑛 >
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Note: Big-𝑂 is not just for time complexity!

• We can use asymptotic notation (big-𝑂, etc.) any time we are trying 

to understand some kind of “scaling behavior”

• For example, let 𝐺 be a simple undirected graph with 𝑁 vertices

• 𝐺 has 𝑂 𝑁2  edges

• If 𝐺 is connected, then 𝐺 has Ω 𝑁  edges

• Admittedly, we are especially interested in time complexity…
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Exponential vs. polynomial

• We are especially interested in the distinction between a polynomial 

time complexity, such as 𝑇 𝑛 = 𝑛2, and an exponential time 

complexity, such as 𝑇 𝑛 = 2𝑛

• We write 𝑇 𝑛 = poly 𝑛  if there is some 𝑘 such that 𝑇 𝑛 = 𝑂 𝑛𝑘

• Exponentials grow much faster than polynomials!

28



Exponential vs. polynomial

• Proof: If 𝑛 ≥ 𝑘 + 1, then

2𝑛 = # subsets of {1, 2, … , 𝑛} = ෍

𝑖=0

𝑛
𝑛
𝑖

≥
𝑛

𝑘 + 1
≥

𝑛

𝑘 + 1

𝑘+1

= Ω 𝑛𝑘+1

= 𝜔 𝑛𝑘 .
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Claim: For every constant 𝑘 ∈ ℕ, we have 𝑛𝑘 = 𝑜 2𝑛


	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Applying our theory
	Slide 4: Agreement graph
	Slide 5: The clique problem
	Slide 6: The clique problem
	Slide 7: The clique problem
	Slide 8: The clique problem
	Slide 9: The clique problem
	Slide 10: Our algorithm is so slow that it’s worthless
	Slide 11: Which problems can be solved through computation?
	Slide 12: Refining our model
	Slide 13: Analogy: Gravity
	Slide 14: Theory vs. practice
	Slide 15: Theory vs. practice
	Slide 16: Time complexity
	Slide 17: Scaling behavior
	Slide 18: Asymptotic analysis
	Slide 19: Asymptotic analysis
	Slide 20: Big-cap O notation
	Slide 21: Big-cap O notation examples
	Slide 22: Big-cap omega and big-cap theta
	Slide 23: Big-cap omega and big-cap theta examples
	Slide 24: Little-o notation
	Slide 25: Little-omega notation
	Slide 26: Summary of asymptotic notation
	Slide 27: Note: Big-cap O is not just for time complexity!
	Slide 28: Exponential vs. polynomial
	Slide 29: Exponential vs. polynomial

