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Post’s Correspondence Problem

* Given: a set of “dominos”

tq ) i3 %
by b, b3 by

e Goal: Determine whether it is possible to generate a “match”

i, | iy | s | Gy, | Lis in

i iy i3 Ly is in

in which the sequence of symbols on top equals the sequence of

symbols on the bottom

* Using the same domino multiple times is permitted



Post’s Correspondence Problem is undecidable

* Post’s correspondence problem, formulated as a language:

PCP = {(tl, ...,tk, bl’ ’bk> . Hil’ e in SUCh that tll ces tln o b ces

Theorem: PCP is undecidable

* Proof outline:

* Step 1: Reduce REJECT to a modified version (“MPCP”)

e Step 2: Reduce MPCP to PCP



Modified PCP

MPCP = {(ty, ..., tk, by, ..., by} : 3iy, ..., iy such that ¢, ¢; -+ t; = byb; -+ b; }

e The difference between PCP and MPCP: In MPCP, matches must start with the

first domino

* We'll use a double outline to indicate the special first domino: b,

Lemma: MPCP is undecidable




R <

e Assume there isa TM P that decides MPCP

* Let’s construct a new TM R that decides REJECT

/‘

Proof that MPCP is undecidable

Given (M, w):

1. Construct dominos ty, ..., ty, by, ... by based on M and w
(details on next slide)

2. Simulate P on(tq, ..., ty, by, ..., by)

3. If P accepts, accept. If P rejects, reject.




* Let Cy be the initial configuration of M on w. Dominos:

Reducing REJECT to MPCP
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* Foreveryq € Q \ {qaccept, qreject} and every b € X:

* If5(q,b) = (q',b’,R), we include

* If6(q,b) = (q',b’, L), we include
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R <

e Assume there isa TM P that decides MPCP

* Let’s construct a new TM R that decides REJECT

/‘

Proof that MPCP is undecidable

Given (M, w):

1. Construct dominos ty, ..., ty, by, ... by, based on M and w
(details on previous slide)

2. Simulate P on (tq, ..., ty, by, ..., by)

3. If P accepts, accept. If P rejects, reject.

Last class:

* If M rejects w, then
there is a match «
* |If there is a match,

then M rejects w



Post’s Correspondence Problem is undecidable

* Post’s correspondence problem, formulated as a language:

PCP = {(tl, ...,tk, bl’ ’bk> . Hil’ e in SUCh that tll ces tln o b ces

Theorem: PCP is undecidable

* Proof outline:

 Step 1: Reduce REJECT to a modified version (“MPCP”) «

e Step 2: Reduce MPCP to PCP



Proof that PCP is undecidable

e Assume thereisa TM P that decides PCP
e Let’s construct a new TM M that decides MPCP

* Forastringu = uqu, ...u,, define u = uqy * uy * -+ % u,

/‘
tr ||| t2 || t3 tr
Given |[ by ||| b2 || b3 by
1. SimulatePon | *% || X8 || *f || *& | | *h
*x by * by * b, * b3* bk* €

2. If P accepts, accept. If P rejects, reject.




ty t; ts %
Given |[ by ||| by || b3 by
1. SimulatePon | *& [[*h || *& || *5 *ho || o
*b_l* b_l* b, * b * b, * €
2. If P accepts, accept. If P rejects, reject.
: ty f| tin |l | Gis | lig
* Suppose the MPCP instance has a match: ||, |1 ," [, |5, | b,
* Then the PCP instance also has a match: | *& | *f | *f%
* by x| by, x| by, x

*
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2] ) t3 9%

Given || by |[| b, || b3 | by
1. SimulatePon | *& || *& || *t || *ts | | *4 || =
*x by * by * b, * b * b, * €

2. If P accepts, accept. If P rejects, reject.

* Conversely, suppose the PCP instance has a match

o)

 Must start with

, because that’s the only domino in which the top

*bl*

string and bottom string start with the same symbol

* Delete all x symbols = MPCP match



Post’s Correspondence Problem is undecidable

* Post’s correspondence problem, formulated as a language:

PCP = {(tl, ...,tk, bl’ ’bk> . Hil’ e in SUCh that tll ces tln o b ces

Theorem: PCP is undecidable

* Proof outline:

 Step 1: Reduce REJECT to a modified version (“MPCP”) «

e Step 2: Reduce MPCP to PCP «



Post’s Correspondence Problem: Recap

* Post’s Correspondence Problem seems like “just a domino puzzle”
* However, we showed how to build a computer out of dominos!

* PCP was secretly a problem about Turing machines all along!
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Undecidability

* Known undecidable languages:

« SELF-REJECTORS
 REJECT
e PCP and MPCP

* Next: The “halting problem”
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The halting problem

* Informal problem statement: Given a Turing machine M and an input

w, determine whether M halts on w.

* The same problem, formulated as a language:

HALT = {{(M,w) : M is a Turing machine that halts on input w}

* It’s the problem of identifying bugs in someone else’s code! &

Theorem: HALT is undecidable

15



Code as data 1l

* The proof that HALT is undecidable
involves Turing machines

constructing Turing machines

* Turing machines can both read and
write descriptions (M) where M is a

Turing machine

“Drawing Hands.”
(1948 lithograph by M. C.

Escher)
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Proof that HALT is undecidable

e Assume there isa TM H that decides HALT

* Let’s construct a new TM R that decides REJECT

/‘

Given (M, W): If M rejects w...
1. Construct (M"), where M' is the following TM: * Then M’ rejects w
~ * Therefore, H accepts (M', w)
Given x:  Therefore, R accepts (M, w) «
1. Simulate M on x > M
2. If M rejects, reject. If M accepts, loop. , If M does not reject w...

 Then M' loops on w
. I/
2. Simulate H on (M ) W) * Therefore, H rejects (M', w)

3. If H accepts, accept. If H rejects, reject.

* Therefore, R rejects (M, w) «
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The Church-Turing thesis, revisited B, &

. LetY < {0, 1}"

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring out whether a given

string is in Y if and only if there exists a Turing machine that decides Y.

 Computation is an intuitive notion rooted in everyday human experience

* Could it be possible to solve the halting problem using science and technology?
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Hypercomputers

* A hypercomputer is a hypothetical device that
can solve some computational problem that cannot

be solved by Turing machines, such as the halting problem
* Could it be possible to build a hypercomputer?

 We could try using quantum physics, antimatter, black holes, dark

energy, superconductors, wormholes, closed timelike curves, ...
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The Physical Church-Turing Thesis

* Let Y be alanguage

Physical Church-Turing Thesis:
It is physically possible to build a device that decides Y if

and only if there exists a Turing machine that decides Y.
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The Physical Church-Turing Thesis

* The standard Church-Turing thesis is a philosophical statement
* The Physical Church-Turing thesis is a scientific law

* Conceivably, it could be disproven by future discoveries... but that would

be very surprising
* Analogy: Second Law of Thermodynamics

* Analogy: Cannot travel faster than the speed of light
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Which problems
can be solved

through computation?



Which languages are decidable?



Some more undecidable problems

 We have seen several interesting examples of undecidable languages

 SELF-REJECTORS, REJECT, PCP, MPCP, HALT

* I’ll describe a few more examples
* Each can be proven undecidable via reduction from HALT
* But we will not do the proofs

* (This material will not be on exercises or exams)
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Hilbert’s 10" problem

* Informal problem statement: Given a polynomial equation with
integer coefficients such as
x? 4+ 3xz +y3 + z%x?% = 4xy? + 6yz + 2,
determine whether there is an integer solution

* As a language: HILBERT10 = {{(p, g) : 3x such that p(x) = q(x)}

Theorem: HILBERT10 is undecidable
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Matrix mortality

* Let My and M; be n X n matrices with integer entries

* We say that (M,, M) is a mortal pair if there exists k € N and there exist

i1, ...,k €10,1} such that M; - M; ----- M; = 0O (the all-zeroes matrix).

Lk

* Let MORTAL = {{M,y, M) : (My, M;) is a mortal pair}

Theorem: MORTAL is undecidable
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Derivatives vs. Integrals

e Recall: Calculus

* Computing derivatives is mechanistic
e Sumrule (f +g)' = f"+ g', productrule (fg)' = f'g + fg’, chain rule
(feg) =(f"og9) g, etc
* In contrast, computing integrals seems to involve creativity

e u-substitutions, integration by parts, etc.
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Elementary functions

* Definition: A function f: R — R is elementary if it can be defined by a
formula using addition, multiplication, rational constants, powers,

exponentials, logarithms, trigonometric functions, and

*E.g. f(x) =x-sin(x*) — 3m- e
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Integration is undecidable

* Fact: There exist elementary functions that do not have elementary

xZ

antiderivatives, such as f(x) = e~

* Let INTEGRABLE = {{f) : f is an elementary function with an

elementary antiderivative}

Theorem: INTEGRABLE is undecidable
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