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Post’s Correspondence Problem

• Given: a set of “dominos”

• Goal: Determine whether it is possible to generate a “match”

in which the sequence of symbols on top equals the sequence of 

symbols on the bottom

• Using the same domino multiple times is permitted
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Post’s Correspondence Problem is undecidable

• Post’s correspondence problem, formulated as a language:

PCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• Proof outline:

• Step 1: Reduce REJECT to a modified version (“MPCP”)

• Step 2: Reduce MPCP to PCP
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Theorem: PCP is undecidable



Modified PCP

MPCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡1𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏1𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• The difference between PCP and MPCP: In MPCP, matches must start with the 

first domino

• We’ll use a double outline to indicate the special first domino:
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Proof that MPCP is undecidable

• Assume there is a TM 𝑃 that decides MPCP

• Let’s construct a new TM 𝑅 that decides REJECT
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Given 𝑀, 𝑤 :

1. Construct dominos 𝑡1, … , 𝑡𝑘 , 𝑏1, … 𝑏𝑘 based on 𝑀 and 𝑤 

(details on next slide)

2. Simulate 𝑃 on 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

3. If 𝑃 accepts, accept. If 𝑃 rejects, reject.

𝑅



Reducing REJECT to MPCP

• Let 𝐶0 be the initial configuration of 𝑀 on 𝑤. Dominos:

•            ,         ,         , and

• For every 𝑞 ∈ 𝑄 ∖ 𝑞accept, 𝑞reject  and every 𝑏 ∈ Σ:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , we include                 , and we include                for every 𝑎 ∈ Σ

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , we include                  , and we include               for every 𝑎 ∈ Σ

•         ,                 , and                 for every 𝑏 ∈ Σ 
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Proof that MPCP is undecidable

• Assume there is a TM 𝑃 that decides MPCP

• Let’s construct a new TM 𝑅 that decides REJECT
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Given 𝑀, 𝑤 :

1. Construct dominos 𝑡1, … , 𝑡𝑘 , 𝑏1, … 𝑏𝑘 based on 𝑀 and 𝑤

(details on previous slide)

2. Simulate 𝑃 on 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

3. If 𝑃 accepts, accept. If 𝑃 rejects, reject.

𝑅

Last class:

• If 𝑀 rejects 𝑤, then 

there is a match 

• If there is a match, 

then 𝑀 rejects 𝑤 



Post’s Correspondence Problem is undecidable

• Post’s correspondence problem, formulated as a language:

PCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• Proof outline:

• Step 1: Reduce REJECT to a modified version (“MPCP”) 

• Step 2: Reduce MPCP to PCP
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Theorem: PCP is undecidable



Proof that PCP is undecidable

• Assume there is a TM 𝑃 that decides PCP

• Let’s construct a new TM 𝑀 that decides MPCP

• For a string 𝑢 = 𝑢1𝑢2 … 𝑢𝑛, define 𝑢 = 𝑢1 ⋆ 𝑢2 ⋆ ⋯ ⋆ 𝑢𝑛
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Given                                                    :

1. Simulate 𝑃 on 

2. If 𝑃 accepts, accept. If 𝑃 rejects, reject.
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• Suppose the MPCP instance has a match: 

• Then the PCP instance also has a match:
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Given                                                    :
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2. If 𝑃 accepts, accept. If 𝑃 rejects, reject.
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• Conversely, suppose the PCP instance has a match

• Must start with              , because that’s the only domino in which the top 

string and bottom string start with the same symbol

• Delete all ⋆ symbols ⇒ MPCP match
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Given                                                    :

1. Simulate 𝑃 on 

2. If 𝑃 accepts, accept. If 𝑃 rejects, reject.
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Post’s Correspondence Problem is undecidable

• Post’s correspondence problem, formulated as a language:

PCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• Proof outline:

• Step 1: Reduce REJECT to a modified version (“MPCP”) 

• Step 2: Reduce MPCP to PCP 
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Theorem: PCP is undecidable



Post’s Correspondence Problem: Recap

• Post’s Correspondence Problem seems like “just a domino puzzle”

• However, we showed how to build a computer out of dominos!

• PCP was secretly a problem about Turing machines all along!
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Undecidability

• Known undecidable languages:

• SELF-REJECTORS

• REJECT

• PCP and MPCP

• Next: The “halting problem”
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The halting problem

• Informal problem statement: Given a Turing machine 𝑀 and an input 

𝑤, determine whether 𝑀 halts on 𝑤.

• The same problem, formulated as a language:

HALT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on input 𝑤

• It’s the problem of identifying bugs in someone else’s code! 
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Theorem: HALT is undecidable



Code as data II

• The proof that HALT is undecidable 

involves Turing machines 

constructing Turing machines

• Turing machines can both read and 

write descriptions 𝑀  where 𝑀 is a 

Turing machine
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“Drawing Hands.”
(1948 lithograph by M. C. Escher)



Proof that HALT is undecidable

• Assume there is a TM 𝐻 that decides HALT

• Let’s construct a new TM 𝑅 that decides REJECT
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Given 𝑀, 𝑤 :
1. Construct 𝑀′ , where 𝑀′ is the following TM:

2. Simulate 𝐻 on 𝑀′, 𝑤
3. If 𝐻 accepts, accept. If 𝐻 rejects, reject.

𝑅

If 𝑀 rejects 𝑤…

• Then 𝑀′ rejects 𝑤

• Therefore, 𝐻 accepts 𝑀′, 𝑤

• Therefore, 𝑅 accepts 𝑀, 𝑤  

If 𝑀 does not reject 𝑤…

• Then 𝑀′ loops on 𝑤

• Therefore, 𝐻 rejects 𝑀′, 𝑤

• Therefore, 𝑅 rejects 𝑀, 𝑤  

Given 𝑥:
1. Simulate 𝑀 on 𝑥
2. If 𝑀 rejects, reject. If 𝑀 accepts, loop.

𝑀′



The Church-Turing thesis, revisited

• Let 𝑌 ⊆ {0, 1}∗

• Computation is an intuitive notion rooted in everyday human experience

• Could it be possible to solve the halting problem using science and technology?
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring out whether a given 

string is in 𝑌 if and only if there exists a Turing machine that decides 𝑌.



Hypercomputers

• A hypercomputer is a hypothetical device that

can solve some computational problem that cannot

be solved by Turing machines, such as the halting problem

• Could it be possible to build a hypercomputer?

• We could try using quantum physics, antimatter, black holes, dark 

energy, superconductors, wormholes, closed timelike curves, …
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The Physical Church-Turing Thesis

• Let 𝑌 be a language

20

Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝑌 if 

and only if there exists a Turing machine that decides 𝑌.



The Physical Church-Turing Thesis

• The standard Church-Turing thesis is a philosophical statement

• The Physical Church-Turing thesis is a scientific law

• Conceivably, it could be disproven by future discoveries… but that would 

be very surprising

• Analogy: Second Law of Thermodynamics

• Analogy: Cannot travel faster than the speed of light
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Which problems

can be solved

through computation?
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Which languages are decidable?
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Some more undecidable problems

• We have seen several interesting examples of undecidable languages

• SELF-REJECTORS,   REJECT,   PCP,   MPCP,   HALT

• I’ll describe a few more examples

• Each can be proven undecidable via reduction from HALT

• But we will not do the proofs

• (This material will not be on exercises or exams)
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Hilbert’s 10th problem

• Informal problem statement: Given a polynomial equation with 

integer coefficients such as 

𝑥2 + 3𝑥𝑧 + 𝑦3 + 𝑧2𝑥2 = 4𝑥𝑦2 + 6𝑦𝑧 + 2,

determine whether there is an integer solution

• As a language: HILBERT10 = { 𝑝, 𝑞 ∶ ∃ Ԧ𝑥 such that 𝑝 Ԧ𝑥 = 𝑞 Ԧ𝑥 }
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Theorem: HILBERT10 is undecidable



Matrix mortality

• Let 𝑀0 and 𝑀1 be 𝑛 × 𝑛 matrices with integer entries

• We say that 𝑀0, 𝑀1  is a mortal pair if there exists 𝑘 ∈ ℕ and there exist 

𝑖1, … , 𝑖𝑘 ∈ 0, 1  such that 𝑀𝑖1
⋅ 𝑀𝑖2

⋅ ⋯ ⋅ 𝑀𝑖𝑘
= 0 (the all-zeroes matrix).

• Let MORTAL = { 𝑀0, 𝑀1 ∶ 𝑀0, 𝑀1  is a mortal pair}
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Theorem: MORTAL is undecidable



Derivatives vs. Integrals

• Recall: Calculus

• Computing derivatives is mechanistic

• Sum rule 𝑓 + 𝑔 ′ = 𝑓′ + 𝑔′, product rule 𝑓𝑔 ′ = 𝑓′𝑔 + 𝑓𝑔′, chain rule 

𝑓 ∘ 𝑔 ′ = 𝑓′ ∘ 𝑔 ⋅ 𝑔′, etc.

• In contrast, computing integrals seems to involve creativity

• 𝑢-substitutions, integration by parts, etc.
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Elementary functions

• Definition: A function 𝑓: ℝ → ℝ is elementary if it can be defined by a 

formula using addition, multiplication, rational constants, powers, 

exponentials, logarithms, trigonometric functions, and 𝜋

• E.g. 𝑓 𝑥 = 𝑥 ⋅ sin 𝑥4 − 3𝜋 ⋅ 𝑒𝑒 𝑥
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Integration is undecidable

• Fact: There exist elementary functions that do not have elementary 

antiderivatives, such as 𝑓 𝑥 = 𝑒−𝑥2

• Let INTEGRABLE = { 𝑓 ∶ 𝑓 is an elementary function with an 

elementary antiderivative}
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Theorem: INTEGRABLE is undecidable
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