CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Post's Correspondence Problem

• Given: a set of "dominos"

• Goal: Determine whether it is possible to generate a "match"

in which the sequence of symbols on top equals the sequence of

symbols on the bottom

• Using the same domino multiple times is permitted

Post's Correspondence Problem is undecidable

• Post's correspondence problem, formulated as a language:

 $PCP = \{ \langle t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_{i_1} \cdots t_{i_n} = b_{i_1} \cdots b_{i_n} \}$

Theorem: PCP is undecidable

• Proof outline:

- Step 1: Reduce REJECT to a modified version ("MPCP")
- Step 2: Reduce MPCP to PCP

Modified PCP

 $MPCP = \{ \langle t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_1 t_{i_1} \cdots t_{i_n} = b_1 b_{i_1} \cdots b_{i_n} \}$

- The difference between PCP and MPCP: In MPCP, matches must start with the first domino
- We'll use a double outline to indicate the special first domino:

Lemma: MPCP is undecidable

Proof that MPCP is undecidable

- Assume there is a TM P that decides MPCP
- Let's construct a new TM R that decides REJECT


```
Given \langle M, w \rangle:
```

R

- 1. Construct dominos $t_1, ..., t_k, b_1, ..., b_k$ based on M and w (details on next slide)
- 2. Simulate *P* on $\langle t_1, \dots, t_k, b_1, \dots, b_k \rangle$
- 3. If *P* accepts, accept. If *P* rejects, reject.

Reducing REJECT to MPCP

• Let C_0 be the initial configuration of M on w. Dominos:

•
$$\begin{pmatrix} \epsilon \\ (C_0) \end{pmatrix}$$
 , $\begin{pmatrix} (\\ (\\ , \\ \end{pmatrix} \end{pmatrix}$, and $\begin{pmatrix} (q_{reject}) \\ \epsilon \end{pmatrix}$

• For every $q \in Q \setminus \{q_{\text{accept}}, q_{\text{reject}}\}$ and every $b \in \Sigma$:

• If
$$\delta(q, b) = (q', b', R)$$
, we include $\begin{bmatrix} qb \\ b'q' \sqcup \end{pmatrix}$, and we include $\begin{bmatrix} qba \\ b'q'a \end{bmatrix}$ for every $a \in \Sigma$
• If $\delta(q, b) = (q', b', L)$, we include $\begin{bmatrix} (qb \\ (q' \sqcup b') \end{bmatrix}$, and we include $\begin{bmatrix} aqb \\ q'ab' \end{bmatrix}$ for every $a \in \Sigma$
 $\begin{bmatrix} b \\ b \end{bmatrix}$, $\begin{bmatrix} bq_{\text{reject}} \\ q_{\text{reject}} \end{bmatrix}$, and $\begin{bmatrix} q_{\text{reject}}b \\ q_{\text{reject}} \end{bmatrix}$ for every $b \in \Sigma$

Proof that MPCP is undecidable

- Assume there is a TM P that decides MPCP
- Let's construct a new TM R that decides REJECT

Given $\langle M, w \rangle$:

R

- Construct dominos t₁, ..., t_k, b₁, ... b_k based on M and w
 (details on previous slide)
- 2. Simulate *P* on $\langle t_1, \dots, t_k, b_1, \dots, b_k \rangle$
- 3. If *P* accepts, accept. If *P* rejects, reject.

Last class:

- If *M* rejects *w*, then
 - there is a match \checkmark
- If there is a match,

then M rejects w 🗸

Post's Correspondence Problem is undecidable

• Post's correspondence problem, formulated as a language:

$$PCP = \{ \langle t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_{i_1} \cdots t_{i_n} = b_{i_1} \cdots b_{i_n} \}$$

Theorem: PCP is undecidable

- Proof outline:
 - Step 1: Reduce REJECT to a modified version ("MPCP") ✓
 - Step 2: Reduce MPCP to PCP

Proof that PCP is undecidable

- Assume there is a TM P that decides PCP
- Let's construct a new TM M that decides MPCP
- For a string $u = u_1 u_2 \dots u_n$, define $\overline{u} = u_1 \star u_2 \star \dots \star u_n$

• Suppose the MPCP instance has a match:

$$\begin{bmatrix} t_1 \\ b_1 \end{bmatrix} \begin{bmatrix} t_{i_1} \\ b_{i_1} \end{bmatrix} \begin{bmatrix} t_{i_2} \\ b_{i_2} \end{bmatrix} \begin{bmatrix} t_{i_3} \\ b_{i_3} \end{bmatrix} \begin{bmatrix} t_{i_4} \\ b_{i_4} \end{bmatrix} \cdots \begin{bmatrix} t_{i_n} \\ b_{i_n} \end{bmatrix}$$

• Then the PCP instance also has a match:

$$\begin{array}{c|cccc} \star \overline{t_1} & \star \overline{t_{i_1}} & \star \overline{t_{i_2}} \\ \star \overline{b_1} \star & \overline{b_{i_1}} \star & \overline{b_{i_2}} \star \end{array} & \dots & \overline{b_{i_2}} \end{array}$$

*

 ϵ

- Conversely, suppose the PCP instance has a match
- Must start with $\frac{\star \overline{t_1}}{\star \overline{b_1} \star}$, because that's the only domino in which the top

string and bottom string start with the same symbol

• Delete all \star symbols \Rightarrow MPCP match

Post's Correspondence Problem is undecidable

• Post's correspondence problem, formulated as a language:

$$PCP = \{ \langle t_1, \dots, t_k, b_1, \dots, b_k \rangle : \exists i_1, \dots, i_n \text{ such that } t_{i_1} \cdots t_{i_n} = b_{i_1} \cdots b_{i_n} \}$$

Theorem: PCP is undecidable

- Proof outline:
 - Step 1: Reduce REJECT to a modified version ("MPCP") ✓
 - Step 2: Reduce MPCP to PCP

Post's Correspondence Problem: Recap

- Post's Correspondence Problem seems like "just a domino puzzle"
- However, we showed how to build a computer out of dominos!
- PCP was secretly a problem about Turing machines all along!

Undecidability

- Known undecidable languages:
 - SELF-REJECTORS
 - REJECT
 - PCP and MPCP
- Next: The "halting problem"

The halting problem

• Informal problem statement: Given a Turing machine M and an input

w, determine whether *M* halts on *w*.

• The same problem, formulated as a language:

HALT = { $\langle M, w \rangle$: *M* is a Turing machine that halts on input *w*}

It's the problem of identifying bugs in someone else's code!

Theorem: HALT is undecidable

Code as data II

- The proof that HALT is undecidable involves Turing machines constructing Turing machines
- Turing machines can both read and write descriptions (M) where M is a Turing machine

"Drawing Hands." (1948 lithograph by M. C. Escher)

Proof that HALT is undecidable

- Assume there is a TM *H* that decides HALT
- Let's construct a new TM R that decides REJECT

Given $\langle M, w \rangle$:

1. Construct $\langle M' \rangle$, where M' is the following TM:

Given *x*:

R

- 1. Simulate *M* on *x*
- 2. If *M* rejects, reject. If *M* accepts, loop.
- 2. Simulate *H* on $\langle M', w \rangle$
- 3. If *H* accepts, accept. If *H* rejects, reject.

If *M* rejects *w*...

M'

- Then M' rejects w
- Therefore, H accepts $\langle M', w \rangle$
- Therefore, R accepts $\langle M, w \rangle$ 🗸

If *M* does not reject *w*...

- Then M' loops on w
- Therefore, H rejects (M', w)
- Therefore, R rejects $\langle M, w \rangle$

The Church-Turing thesis, revisited

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

There exists an "algorithm" / "procedure" for figuring out whether a given string is in Y if and only if there exists a Turing machine that decides Y.

- Computation is an intuitive notion rooted in everyday human experience
- Could it be possible to solve the halting problem using science and technology?

Hypercomputers

A hypercomputer is a hypothetical device that

can solve some computational problem that cannot

be solved by Turing machines, such as the halting problem

- Could it be possible to build a hypercomputer?
- We could try using quantum physics, antimatter, black holes, dark energy, superconductors, wormholes, closed timelike curves, ...

The Physical Church-Turing Thesis

• Let Y be a language

Physical Church-Turing Thesis:

It is physically possible to build a device that decides Y if

and only if there exists a Turing machine that decides Y.

The Physical Church-Turing Thesis

- The standard Church-Turing thesis is a philosophical statement
- The Physical Church-Turing thesis is a scientific law
- Conceivably, it could be disproven by future discoveries... but that would be very surprising
- Analogy: Second Law of Thermodynamics
- Analogy: Cannot travel faster than the speed of light

Which problems

can be solved

through computation?

Which languages are decidable?

Some more undecidable problems

- We have seen several interesting examples of undecidable languages
 - SELF-REJECTORS, REJECT, PCP, MPCP, HALT
- I'll describe a few more examples
- Each can be proven undecidable via reduction from HALT
- But we will not do the proofs
- (This material will not be on exercises or exams)

Hilbert's 10th problem

• Informal problem statement: Given a polynomial equation with

integer coefficients such as

$$x^{2} + 3xz + y^{3} + z^{2}x^{2} = 4xy^{2} + 6yz + 2$$
,

determine whether there is an integer solution

• As a language: HILBERT10 = { $\langle p, q \rangle$: $\exists \vec{x}$ such that $p(\vec{x}) = q(\vec{x})$ }

Theorem: HILBERT10 is undecidable

Matrix mortality

- Let M_0 and M_1 be $n \times n$ matrices with integer entries
- We say that (M_0, M_1) is a mortal pair if there exists $k \in \mathbb{N}$ and there exist $i \in \mathcal{I}(0, 1)$ such that $M_0 = M_0 = 0$ (the all paragemetric)
 - $i_1, \dots, i_k \in \{0, 1\}$ such that $M_{i_1} \cdot M_{i_2} \cdot \dots \cdot M_{i_k} = 0$ (the all-zeroes matrix).
- Let MORTAL = { $\langle M_0, M_1 \rangle : (M_0, M_1)$ is a mortal pair}

Theorem: MORTAL is undecidable

Derivatives vs. Integrals

- Recall: Calculus
- Computing derivatives is mechanistic
 - Sum rule (f + g)' = f' + g', product rule (fg)' = f'g + fg', chain rule $(f \circ g)' = (f' \circ g) \cdot g'$, etc.
- In contrast, computing integrals seems to involve creativity
 - *u*-substitutions, integration by parts, etc.

Elementary functions

• Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is elementary if it can be defined by a formula using addition, multiplication, rational constants, powers, exponentials, logarithms, trigonometric functions, and π

• E.g.
$$f(x) = x \cdot \sin(x^4) - 3\pi \cdot e^{e^{\sqrt{x}}}$$

Integration is undecidable

- Fact: There exist elementary functions that do not have elementary antiderivatives, such as $f(x) = e^{-x^2}$
- Let INTEGRABLE = $\{\langle f \rangle : f \text{ is an elementary function with an elementary antiderivative}}$

Theorem: INTEGRABLE is undecidable