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Which problems

can be solved

through computation?
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Multi-tape Turing machines
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Multi-tape Turing machines

• Let 𝑘 be any positive integer and let 𝑌 be a language
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Theorem: There exists a 𝑘-tape TM that decides 𝑌 if and only if 

there exists a 1-tape TM that decides 𝑌



TMs can simulate all “reasonable” machines

• We could add various other bells and whistles to the basic TM model

• The ability to observe the two neighboring cells

• The ability to “teleport” back to the initial cell in a single step

• A two-dimensional tape

• None of these changes has any effect on the power of the model
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Turing machines vs. your laptop

• OBJECTION:

• “Each individual Turing machine can only solve one problem.

• My laptop is a single device that can run arbitrary computations.

• Therefore, Turing machines don’t properly model my laptop.”
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Email machine?? Zoom machine?? Tetris machine?? Photoshop machine??General purpose computer



Code as data

• The response to this objection is based on the “code as data” idea

• A Turing machine 𝑀 can be encoded as a binary string 𝑀

• Plan: We will show how to simulate a Turing machine 𝑀, given its 

encoding 𝑀
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Universal Turing machines
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Theorem: There exists a Turing machine 𝑈 such that for every Turing 

machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• One super-algorithm that contains all other algorithms inside it!



Example: Exercise 4
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… {"a": {"0": ["a", "_", "R"], "1": ["b", 
"_", "R"], "_": ["c", "_", "R"], "#": ["d", 
"_", "R"], "$": null, "&": null, "%": null, 
"@": null}, "b": {"0": ["y", "0", "R"], "1": 
["b", "0", "R"], "_": ["c", "1", "R"], "#": 
["d", …

⇓

⇓ ⇑

⇒

𝑀

𝑀

≈ 𝑈



Universal Turing machines
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Theorem: There exists a single Turing machine 𝑈 such that for every 

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• To properly prove it, we need to clarify how 𝑀  is defined



Encoding a Turing machine as a string

• To encode a Turing machine 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 :

• WLOG, 𝑄 = Σ = 2𝑘 for some 𝑘 ∈ ℕ

• WLOG, 𝑄 = 0, 1 𝑘, 𝑞0 = 0𝑘, 𝑞accept = 1𝑘−10, and 𝑞reject = 1𝑘

• Encode 𝑏 ∈ Σ as 𝑏 ∈ 0, 1 𝑘, with 0 = 0𝑘, 1 = 10𝑘−1, and ⊔ = 1𝑘

• Encode 𝑞, 𝑏, 𝐷 ∈ 𝑄 × Σ × L, R  as 𝑞, 𝑏, 𝑑 = 𝑞 𝑏 𝐷 ∈ 0, 1 2𝑘+1

• Then 𝑀 = 1𝑘0 𝛿 , where 𝛿  is the list of ⟨𝛿 𝑞, 𝑏 ⟩ for all 𝑞, 𝑏 ∈ 𝑄 × Σ
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Universal Turing machines
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Theorem: There exists a single Turing machine 𝑈 such that for every 

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts 𝑀, 𝑤 ≔ 𝑀 𝑤.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• Proof sketch: Next two slides



Initializing the simulation

• 𝑈 is given 𝑀, 𝑤 = 1𝑘0 𝛿 𝑤

• Initialize a tape containing 𝑞0 = 0𝑘

• Initialize a tape containing 𝛿

• Note: To figure out where 𝛿  ends and 𝑤 starts, count to 22𝑘

• Initialize a tape containing 𝑤1 𝑤2 … 𝑤𝑛

• Note: 𝑤𝑖 = 𝑤𝑖0𝑘−1
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𝑤1 𝑤2 … ⟨𝑤𝑛⟩

𝛿

𝑞0

1𝑘0 𝛿 𝑤



Advancing the simulation

• Until the simulation reaches a halt state:

1. Find 𝛿 𝑞, 𝑏𝑖 = 𝑞′, 𝑏′, 𝐷  within 𝛿

• Idea: Treat 𝑞 𝑏𝑖  as a number 𝑁 in binary

• Count to 𝑁

2. Replace 𝑞 with 𝑞′ and replace 𝑏𝑖  with 𝑏′

3. Move this head 𝑘 cells in direction 𝐷
16

𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …

1𝑘0 𝛿 𝑤



Interpretation of universal Turing machines

• A universal Turing machine can be “programmed” to do anything that is 

computationally possible

• This is why you don’t need a separate laptop for each task

• If you want to build a computer from scratch in some post-apocalyptic 

future, then your job is to build a universal Turing machine
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Which problems

can be solved

through computation?
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What are Turing machines

capable of?
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Which languages are decidable?
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Contrived vs. natural

• SELF-REJECTORS = { 𝑀 ∶ 𝑀 is a self-rejecting Turing machine}

• We proved that SELF-REJECTORS is undecidable

• OBJECTION: “SELF-REJECTORS seems like a very contrived example.”

• RESPONSE: There are other undecidable languages that are 

natural/well-motivated/interesting!
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The rejection problem

• Informal problem statement: Given a Turing machine 𝑀 and an input 

𝑤, determine whether 𝑀 rejects 𝑤.

• The same problem, formulated as a language:

REJECT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that rejects 𝑤

• Attempted algorithm:
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Given 𝑀, 𝑤 :

1. Simulate 𝑀 on 𝑤.

2. If it rejects, accept. Otherwise, reject.

Does the proposed algorithm successfully decide REJECT?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Yes

A: No. Step 1 isn’t legal, so the
algorithm isn’t well-defined

D: No. The algorithm behaves
incorrectly in some cases

B: No. Step 2 isn’t legal, so the
algorithm isn’t well-defined



The rejection problem is undecidable

• REJECT = { 𝑀, 𝑤 : 𝑀 is a Turing machine that rejects 𝑤}

• How should we prove it?
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Theorem: REJECT is undecidable.



Reductions

• We already proved that SELF-REJECTORS is

undecidable

• Plan: Let’s show that if REJECT were decidable, then 

SELF-REJECTORS would also be decidable – a contradiction

• “Proof by reduction”
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Proof that REJECT is undecidable

• Assume for the sake of contradiction that there is

some Turing machine 𝑅 that decides REJECT

• Let’s construct a new TM 𝑆 that decides SELF-REJECTORS
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Given the input 𝑀 :

1. “Copy and paste” to construct the string 𝑀, 𝑀

2. Simulate 𝑅 on 𝑀, 𝑀

3. If 𝑅 accepts, accept. If 𝑅 rejects, reject.

𝑆

• If 𝑀 ∈ SELF-REJECTORS, 

then 𝑅 accepts 𝑀, 𝑀 , and 

therefore 𝑆 accepts 𝑀  

• If 𝑀 ∉ SELF-REJECTORS, 

then 𝑅 rejects 𝑀, 𝑀 , and 

therefore 𝑆 rejects 𝑀  
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