
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Which problems

can be solved

through computation?

2

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

3

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Multi-tape Turing machines

4

1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

𝑞

Multi-tape Turing machines

• Let 𝑘 be any positive integer and let 𝑌 be a language

5

Theorem: There exists a 𝑘-tape TM that decides 𝑌 if and only if

there exists a 1-tape TM that decides 𝑌

TMs can simulate all “reasonable” machines

• We could add various other bells and whistles to the basic TM model

• The ability to observe the two neighboring cells

• The ability to “teleport” back to the initial cell in a single step

• A two-dimensional tape

• None of these changes has any effect on the power of the model

6

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

7

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Turing machines vs. your laptop

• OBJECTION:

• “Each individual Turing machine can only solve one problem.

• My laptop is a single device that can run arbitrary computations.

• Therefore, Turing machines don’t properly model my laptop.”

8

Email machine?? Zoom machine?? Tetris machine?? Photoshop machine??General purpose computer

Code as data

• The response to this objection is based on the “code as data” idea

• A Turing machine 𝑀 can be encoded as a binary string 𝑀

• Plan: We will show how to simulate a Turing machine 𝑀, given its

encoding 𝑀

9

Universal Turing machines

10

Theorem: There exists a Turing machine 𝑈 such that for every Turing

machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• One super-algorithm that contains all other algorithms inside it!

Example: Exercise 4

11

… {"a": {"0": ["a", "_", "R"], "1": ["b",
"_", "R"], "_": ["c", "_", "R"], "#": ["d",
"_", "R"], "$": null, "&": null, "%": null,
"@": null}, "b": {"0": ["y", "0", "R"], "1":
["b", "0", "R"], "_": ["c", "1", "R"], "#":
["d", …

⇓

⇓ ⇑

⇒

𝑀

𝑀

≈ 𝑈

Universal Turing machines

12

Theorem: There exists a single Turing machine 𝑈 such that for every

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• To properly prove it, we need to clarify how 𝑀 is defined

Encoding a Turing machine as a string

• To encode a Turing machine 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 :

• WLOG, 𝑄 = Σ = 2𝑘 for some 𝑘 ∈ ℕ

• WLOG, 𝑄 = 0, 1 𝑘, 𝑞0 = 0𝑘, 𝑞accept = 1𝑘−10, and 𝑞reject = 1𝑘

• Encode 𝑏 ∈ Σ as 𝑏 ∈ 0, 1 𝑘, with 0 = 0𝑘, 1 = 10𝑘−1, and ⊔ = 1𝑘

• Encode 𝑞, 𝑏, 𝐷 ∈ 𝑄 × Σ × L, R as 𝑞, 𝑏, 𝑑 = 𝑞 𝑏 𝐷 ∈ 0, 1 2𝑘+1

• Then 𝑀 = 1𝑘0 𝛿 , where 𝛿 is the list of ⟨𝛿 𝑞, 𝑏 ⟩ for all 𝑞, 𝑏 ∈ 𝑄 × Σ

13

Universal Turing machines

14

Theorem: There exists a single Turing machine 𝑈 such that for every

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts 𝑀, 𝑤 ≔ 𝑀 𝑤.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• Proof sketch: Next two slides

Initializing the simulation

• 𝑈 is given 𝑀, 𝑤 = 1𝑘0 𝛿 𝑤

• Initialize a tape containing 𝑞0 = 0𝑘

• Initialize a tape containing 𝛿

• Note: To figure out where 𝛿 ends and 𝑤 starts, count to 22𝑘

• Initialize a tape containing 𝑤1 𝑤2 … 𝑤𝑛

• Note: 𝑤𝑖 = 𝑤𝑖0𝑘−1

15

𝑤1 𝑤2 … ⟨𝑤𝑛⟩

𝛿

𝑞0

1𝑘0 𝛿 𝑤

Advancing the simulation

• Until the simulation reaches a halt state:

1. Find 𝛿 𝑞, 𝑏𝑖 = 𝑞′, 𝑏′, 𝐷 within 𝛿

• Idea: Treat 𝑞 𝑏𝑖 as a number 𝑁 in binary

• Count to 𝑁

2. Replace 𝑞 with 𝑞′ and replace 𝑏𝑖 with 𝑏′

3. Move this head 𝑘 cells in direction 𝐷
16

𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …

1𝑘0 𝛿 𝑤

Interpretation of universal Turing machines

• A universal Turing machine can be “programmed” to do anything that is

computationally possible

• This is why you don’t need a separate laptop for each task

• If you want to build a computer from scratch in some post-apocalyptic

future, then your job is to build a universal Turing machine

17

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

18

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Which problems

can be solved

through computation?

19

What are Turing machines

capable of?

20

Which languages are decidable?

21

Contrived vs. natural

• SELF-REJECTORS = { 𝑀 ∶ 𝑀 is a self-rejecting Turing machine}

• We proved that SELF-REJECTORS is undecidable

• OBJECTION: “SELF-REJECTORS seems like a very contrived example.”

• RESPONSE: There are other undecidable languages that are

natural/well-motivated/interesting!

22

The rejection problem

• Informal problem statement: Given a Turing machine 𝑀 and an input

𝑤, determine whether 𝑀 rejects 𝑤.

• The same problem, formulated as a language:

REJECT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that rejects 𝑤

• Attempted algorithm:

23

Given 𝑀, 𝑤 :

1. Simulate 𝑀 on 𝑤.

2. If it rejects, accept. Otherwise, reject.

Does the proposed algorithm successfully decide REJECT?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Yes

A: No. Step 1 isn’t legal, so the
algorithm isn’t well-defined

D: No. The algorithm behaves
incorrectly in some cases

B: No. Step 2 isn’t legal, so the
algorithm isn’t well-defined

The rejection problem is undecidable

• REJECT = { 𝑀, 𝑤 : 𝑀 is a Turing machine that rejects 𝑤}

• How should we prove it?

24

Theorem: REJECT is undecidable.

Reductions

• We already proved that SELF-REJECTORS is

undecidable

• Plan: Let’s show that if REJECT were decidable, then

SELF-REJECTORS would also be decidable – a contradiction

• “Proof by reduction”

25

Proof that REJECT is undecidable

• Assume for the sake of contradiction that there is

some Turing machine 𝑅 that decides REJECT

• Let’s construct a new TM 𝑆 that decides SELF-REJECTORS

26

Given the input 𝑀 :

1. “Copy and paste” to construct the string 𝑀, 𝑀

2. Simulate 𝑅 on 𝑀, 𝑀

3. If 𝑅 accepts, accept. If 𝑅 rejects, reject.

𝑆

• If 𝑀 ∈ SELF-REJECTORS,

then 𝑅 accepts 𝑀, 𝑀 , and

therefore 𝑆 accepts 𝑀

• If 𝑀 ∉ SELF-REJECTORS,

then 𝑅 rejects 𝑀, 𝑀 , and

therefore 𝑆 rejects 𝑀

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: The Church-Turing Thesis
	Slide 4: Multi-tape Turing machines
	Slide 5: Multi-tape Turing machines
	Slide 6: TMs can simulate all “reasonable” machines
	Slide 7: The Church-Turing Thesis
	Slide 8: Turing machines vs. your laptop
	Slide 9: Code as data
	Slide 10: Universal Turing machines
	Slide 11: Example: Exercise 4
	Slide 12: Universal Turing machines
	Slide 13: Encoding a Turing machine as a string
	Slide 14: Universal Turing machines
	Slide 15: Initializing the simulation
	Slide 16: Advancing the simulation
	Slide 17: Interpretation of universal Turing machines
	Slide 18: The Church-Turing Thesis
	Slide 19: Which problems can be solved through computation?
	Slide 20: What are Turing machines capable of?
	Slide 21: Which languages are decidable?
	Slide 22: Contrived vs. natural
	Slide 23: The rejection problem
	Slide 24: The rejection problem is undecidable
	Slide 25: Reductions
	Slide 26: Proof that REJECT is undecidable

