CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Which problems

can be solved

through computation?

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

exists a Turing machine that decides Y.

 Mathematically precise notion

Are Turing machines powerful enough?

- **OBJECTION:** "To encompass all possible algorithms, we should add various bells and whistles to the Turing machine model."
- Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing machine, except it has a transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R, S\}$
- S means the head does not move in this step
- (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

Left-right-stationary Turing machines

• Let *Y* be a language

Theorem: There exists a left-right-stationary TM that decides Y if and only if there exists a TM that decides Y

Multi-tape Turing machines

• Let k be any positive integer and let Y be a language

there exists a 1-tape TM that decides Y

How should we keep track of the locations of the simulated heads?

A: Store the location data in the machine's state

C: Use special symbols to mark the cells containing simulated heads

B: Ensure that the real/simulated heads' locations are always equal

D: Store the location data in a single dedicated tape cell

Respond at PollEv.com/whoza or text "whoza" to 22333

Proof on upcoming 14 slides

a

Idea: Pack a bunch of data into

each cell

 Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• Idea: Pack a bunch of data into

each cell

 Store "simulated heads" on the tape, along with k "simulated symbols" in each cell

• The one "real head" will scan back and forth, updating the simulated heads' locations and the simulated tape contents. (Details on the next slides)

- Let $M = (Q, q_0, q_{accept}, q_{reject}, \Sigma, \sqcup, \delta)$ be a k-tape Turing machine that decides Y
- We will define a 1-tape Turing machine

$$M' = (Q', q'_0, q'_{\text{accept}}, q'_{\text{reject}}, \Sigma', \sqcup', \delta')$$

that also decides Y

Simulating k tapes with 1 tape: Alphabet

- Let $\Gamma = \Sigma \cup \{b : b \in \Sigma\}$, i.e., two disjoint copies of Σ
 - Interpretation: An underline indicates the presence of a simulated head

• New alphabet:
$$\Sigma' = \{\sqcup'\} \cup \left\{ \begin{array}{c} b_1 \\ \vdots \\ b_k \end{array} : b_1, \dots, b_k \in \Gamma \right\}$$

• Interpretation: One symbol in Σ' is one "simulated column" of M

Simulating 2 tapes with 1 tape: States

Simulating k tapes with 1 tape: States

• New state set:

Simulating k tapes with 1 tape: Start state

• New start state:

$$q'_0 = egin{array}{c|c} q_0 & {
m R} \\ ? & ? \\ \vdots & \vdots \\ ? & ? \end{array}$$

Simulating k tapes with 1 tape: Transitions

• If
$$\sigma_j = (a, D)$$
 and $c_j = b_j$:

• If $\sigma_j = (a, S)$ and $c_j = \underline{b_j}$:

• If $\sigma_j = ?$ and $b_j = ?$:

In all other cases:

Let $b'_j = ?$, $\sigma'_j = ?$, $c'_j = a$ Let $b'_j = a$, $\sigma'_j = ?$, $c'_j = \underline{a}$ Let $b'_j = c_j$, $\sigma'_j = ?$, $c'_j = \underline{c_j}$ Let $b'_j = b_j$, $\sigma'_j = \sigma_j$, $c'_j = c_j$

Simulating k tapes with 1 tape: Transitions

- If $\sigma_i = ?$ and $b_i = ?$:
- In all other cases:

Let $b'_j = \sqcup$, $\sigma'_j = ?$, $c'_j = \sqcup$ Let $b'_j = b_j$, $\sigma'_j = \sigma_j$, $c'_j = \sqcup$

Simulating k tapes with 1 tape: Transitions

- Let $(q', a_1, \dots, a_k, D_1, \dots, D_k) = \delta(q, b_1, \dots, b_k)$, treating $b_j = ?$ as $b_j = \sqcup$
- If q' is a halting state: Let $b'_j = ?$, $\sigma'_j = ?$, $c'_j = \sqcup$

Let $b'_i = b_i$, $\sigma'_i = (a_i, D_i)$, $c'_i = \sqcup$

- If $\sigma_j = ?$ and $b_j = ?$: Let $b'_j = \sqcup$, $\sigma'_j = (a_j, D_j)$, $c'_j = \sqcup$
 - In all other cases:

Simulating k tapes with 1 tape: Halting states

R

?

?

- That completes the definition of M'
- Exercise: Rigorously prove that M' decides the language Y

TMs can simulate all "reasonable" machines

- We could add various other bells and whistles to the basic TM model
 - The ability to observe the two neighboring cells
 - The ability to "teleport" back to the initial cell in a single step

- A two-dimensional tape
- None of these changes has any effect on the power of the model