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Which problems

can be solved

through computation?
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, we should add various 

bells and whistles to the Turing machine model.”

• Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing 

machine, except it has a transition function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R, S}

• S means the head does not move in this step

• (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)
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Left-right-stationary Turing machines

• Let 𝑌 be a language
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Theorem: There exists a left-right-stationary TM that decides 𝑌 

if and only if there exists a TM that decides 𝑌



Multi-tape Turing machines

• Another TM variant: “𝑘-tape TM”

• Transition function:

𝛿: 𝑄 × Σ𝑘 → 𝑄 × Σ𝑘 × {L, R, S}𝑘

• (Exercise: Rigorously define 

acceptance, rejection, etc.)
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1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

𝑞

In each step, what determines the actions of head 1?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Head 1’s state and the symbols
observed by all heads

A: Head 1’s state and the symbol
observed by head 1

D: The machine’s state and the
symbol observed by head 1

B: The machine’s state and the
symbols observed by all heads



Multi-tape Turing machines

• Let 𝑘 be any positive integer and let 𝑌 be a language
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Theorem: There exists a 𝑘-tape TM that decides 𝑌 if and only if 

there exists a 1-tape TM that decides 𝑌

How should we keep track of the locations of the simulated heads?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: Ensure that the real/simulated
heads’ locations are always equal

A: Store the location data in the
machine’s state

D: Store the location data in a
single dedicated tape cell

C: Use special symbols to mark the
cells containing simulated heads

Proof on upcoming 14 slides



• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell 

Simulating 𝑘 tapes with 1 tape
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1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

𝑞



• Idea: Pack a bunch of data into

each cell

• Store “simulated heads” on the

tape, along with 𝑘 “simulated

symbols” in each cell

• The one “real head” will scan back and forth, updating the simulated heads’ 

locations and the simulated tape contents. (Details on the next slides)

Simulating 𝑘 tapes with 1 tape
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1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

0

⊔



Simulating 𝑘 tapes with 1 tape

• Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿  be a 𝑘-tape Turing machine 

that decides 𝑌

• We will define a 1-tape Turing machine

𝑀′ = 𝑄′, 𝑞0
′ , 𝑞accept

′ , 𝑞reject
′ , Σ′,⊔′, 𝛿′

that also decides 𝑌
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Simulating 𝑘 tapes with 1 tape: Alphabet

• Let Γ = Σ ∪ പ𝑏 ∶ 𝑏 ∈ Σ , i.e., two disjoint copies of Σ 

• Interpretation: An underline indicates the presence of a simulated head

• New alphabet: Σ′ = ⊔′ ∪  ∶ 𝑏1, … , 𝑏𝑘 ∈ Γ

• Interpretation: One symbol in Σ′ is one “simulated column” of 𝑀

• Technicality: Encode input over the alphabet  , instead of 0, 1

11

𝑏1

⋮

𝑏𝑘

0

⊔

⋮

⊔

1

⊔

⋮

⊔



Simulating 2 tapes with 1 tape: States
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𝑞 R

1 0, R

# ⊔, L

1 1 0 ⊔ ⊔

0 # 1 $ ⊔

0

⊔

State of 𝑀 →

Head 1 symbol →

Head 2 symbol →

← Direction of 𝑀′ motion

← Head 1 instruction

← Head 2 instruction

State of 𝑴′

⊔′⊔′⊔′⊔′⊔′⊔′

𝑞 R

? ?

# ⊔, L

𝑞 R

1 ?

# ⊔, L

𝑞 L

1 ?

# ⊔, L

𝑞 L

1 ?

? ?

𝑞 L

1 ?

0 ?

⊔

⊔
⊔′

$

#

𝑞′ R

1 0, L

0 #, R



Simulating 𝑘 tapes with 1 tape: States 

• New state set:

𝑄′ =  ∶  

𝑞 ∈ 𝑄 

𝐷 ∈ L, R  

𝑏1, … , 𝑏𝑘 ∈ Σ ∪ ?  

𝜎1, … , 𝜎𝑘 ∈ Σ × L, R, S ∪ {? }
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𝑞 𝐷

𝑏1 𝜎1

⋮ ⋮

𝑏𝑘 𝜎𝑘



Simulating 𝑘 tapes with 1 tape: Start state

• New start state:

𝑞0
′ = 
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𝑞0 R

? ?

⋮ ⋮

? ?



Simulating 𝑘 tapes with 1 tape: Transitions

𝛿′  , =  ,  , 𝐷

• If 𝜎𝑗 = 𝑎, 𝐷  and 𝑐𝑗 = 𝑏𝑗:  Let 𝑏𝑗
′ = ?,  𝜎𝑗

′ = ?, 𝑐𝑗
′ = 𝑎 

• If 𝜎𝑗 = 𝑎, S  and 𝑐𝑗 = 𝑏𝑗:  Let 𝑏𝑗
′ = 𝑎,  𝜎𝑗

′ = ?, 𝑐𝑗
′ = 𝑎

• If 𝜎𝑗 = ? and 𝑏𝑗 = ?:   Let 𝑏𝑗
′ = 𝑐𝑗,  𝜎𝑗

′ = ?, 𝑐𝑗
′ = 𝑐𝑗

• In all other cases:    Let 𝑏𝑗
′ = 𝑏𝑗,  𝜎𝑗

′ = 𝜎𝑗, 𝑐𝑗
′ = 𝑐𝑗
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𝑐1

⋮

𝑐𝑘

𝑐1
′

⋮

𝑐𝑘
′

𝑞 𝐷

𝑏1 𝜎1

⋮ ⋮

𝑏𝑘 𝜎𝑘

𝑞 𝐷

𝑏1
′ 𝜎1

′

⋮ ⋮

𝑏𝑘
′ 𝜎𝑘

′



Simulating 𝑘 tapes with 1 tape: Transitions

𝛿′  , ⊔′ =  ,  , L

• If 𝜎𝑗 = ? and 𝑏𝑗 = ?:   Let 𝑏𝑗
′ = ⊔,  𝜎𝑗

′ = ?, 𝑐𝑗
′ = ⊔ 

• In all other cases:    Let 𝑏𝑗
′ = 𝑏𝑗,  𝜎𝑗

′ = 𝜎𝑗, 𝑐𝑗
′ = ⊔
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𝑐1
′

⋮

𝑐𝑘
′

𝑞 R

𝑏1 𝜎1

⋮ ⋮

𝑏𝑘 𝜎𝑘

𝑞 L

𝑏1
′ 𝜎1

′

⋮ ⋮

𝑏𝑘
′ 𝜎𝑘

′



Simulating 𝑘 tapes with 1 tape: Transitions

𝛿′  , ⊔′ =  ,  , R

• Let 𝑞′, 𝑎1, … , 𝑎𝑘 , 𝐷1, … , 𝐷𝑘 = 𝛿 𝑞, 𝑏1, … , 𝑏𝑘 , treating 𝑏𝑗 = ? as 𝑏𝑗 = ⊔

• If 𝑞′ is a halting state:  Let 𝑏𝑗
′ = ?,  𝜎𝑗

′ = ?,  𝑐𝑗
′ = ⊔

• If 𝜎𝑗 = ? and 𝑏𝑗 = ?:  Let 𝑏𝑗
′ = ⊔,  𝜎𝑗

′ = 𝑎𝑗 , 𝐷𝑗 , 𝑐𝑗
′ = ⊔ 

• In all other cases:   Let 𝑏𝑗
′ = 𝑏𝑗,  𝜎𝑗

′ = 𝑎𝑗 , 𝐷𝑗 , 𝑐𝑗
′ = ⊔
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𝑐1
′

⋮

𝑐𝑘
′

𝑞 L

𝑏1 𝜎1

⋮ ⋮

𝑏𝑘 𝜎𝑘

𝑞′ R

𝑏1
′ 𝜎1

′

⋮ ⋮

𝑏𝑘
′ 𝜎𝑘

′



Simulating 𝑘 tapes with 1 tape: Halting states

𝑞accept
′ =     𝑞reject

′ =
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𝑞accept R

? ?

⋮ ⋮

? ?

𝑞reject R

? ?

⋮ ⋮

? ?



Simulating 𝑘 tapes with 1 tape

• That completes the definition of 𝑀′

• Exercise: Rigorously prove that 𝑀′ decides the language 𝑌
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TMs can simulate all “reasonable” machines

• We could add various other bells and whistles to the basic TM model

• The ability to observe the two neighboring cells

• The ability to “teleport” back to the initial cell in a single step

• A two-dimensional tape

• None of these changes has any effect on the power of the model

20


	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: The Church-Turing Thesis
	Slide 4: Are Turing machines powerful enough?
	Slide 5: Left-right-stationary Turing machines
	Slide 6: Multi-tape Turing machines
	Slide 7: Multi-tape Turing machines
	Slide 8: Simulating k tapes with 1 tape
	Slide 9: Simulating k tapes with 1 tape
	Slide 10: Simulating k tapes with 1 tape
	Slide 11: Simulating k tapes with 1 tape: Alphabet
	Slide 12: Simulating 2 tapes with 1 tape: States
	Slide 13: Simulating k tapes with 1 tape: States 
	Slide 14: Simulating k tapes with 1 tape: Start state
	Slide 15: Simulating k tapes with 1 tape: Transitions
	Slide 16: Simulating k tapes with 1 tape: Transitions
	Slide 17: Simulating k tapes with 1 tape: Transitions
	Slide 18: Simulating k tapes with 1 tape: Halting states
	Slide 19: Simulating k tapes with 1 tape
	Slide 20: TMs can simulate all “reasonable” machines

