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Which problems

can be solved

through computation?
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Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑀 decides 𝑌 if

• 𝑀 accepts every 𝑤 ∈ 𝑌, and

• 𝑀 rejects every 𝑤 ∈ 0, 1 ∗ ∖ 𝑌

• This is a mathematical model of what it means to “solve a problem”
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Invalid inputs

• Informal problem statement: “Given a graph 𝐺, determine whether it is 

connected”

• The same problem, formulated as a language:

CONNECTED = 𝐺 ∶ 𝐺 is a connected graph

• Suppose we want to decide CONNECTED

• If we are given 𝐺  where 𝐺 is a connected graph, we should accept

• If we are given 𝐺  where 𝐺 is a disconnected graph, we should reject
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What if we are given 𝑤 ∈ 0, 1 ∗ that is not the encoding of any
graph?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: We can accept or reject, but we
must not loop

A: This situation cannot occur B: It doesn’t matter what we do

D: We must reject



Invalid inputs

• There can exist “invalid inputs” 𝑤 ∈ 0, 1 ∗ that do not encode graphs

• For example, suppose we are using adjacency matrices to encode graphs

• Then 𝐺  is a perfect square for every graph 𝐺

• Therefore, 10101 is not the encoding of any graph

• Technically, 10101 ∉ CONNECTED = 𝐺 ∶ 𝐺 is a connected graph

• To decide CONNECTED, a Turing machine would have to reject 10101
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Checking for validity

• OBJECTION: “But the informal problem statement didn’t say anything 

about rejecting invalid inputs!”

• “Given a graph 𝐺, determine whether it is connected”

• RESPONSE 1: It is not hard to check whether a given string 𝑤 is the 

encoding of a graph

• Therefore, if we are trying to understand how hard/easy the problem is, 

we don’t need to worry about invalid inputs
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Promise problems

• RESPONSE 2: There are more

sophisticated ways of modeling “problems”

• Definition: A promise problem is a pair Π = 𝑌, 𝑁 , where 𝑌 and 𝑁 are 

disjoint subsets of 0, 1 ∗

• E.g., 𝑌 = 𝐺 ∶ 𝐺 is a connected graph  and 𝑁 = 𝐺 ∶ 𝐺 is a disconnected graph

• We say that a Turing machine 𝑀 solves Π if it accepts every 𝑤 ∈ 𝑌 and it 

rejects every 𝑤 ∈ 𝑁
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0, 1 ∗

𝑌 𝑁



Ignoring invalid inputs

• In this course, for simplicity’s sake and for historical reasons, we will 

focus on languages rather than promise problems

• However, for simplicity’s sake, we will mostly ignore the issue of 

invalid inputs
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Summary

• “Deciding a language” is not a perfect mathematical model of “solving a 

problem”…

• But it is a pretty good model
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Decidable and undecidable

• Let 𝑌 be a language

• We say that 𝑌 is decidable if there exists a Turing machine 𝑀 that 

decides 𝑌

• Otherwise, we say that 𝑌 is undecidable
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Which problems

can be solved

through computation?
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Which languages are decidable?
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Examples

• PALINDROMES = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 is the same forward and backward

• PARITY = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 has an odd number of ones

• 𝑌 = 0𝐾 𝐾 ∶ 𝐾 is a positive integer
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Out of those three languages, how many are decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Two

A: Zero B: One

D: Three



Is every language decidable?
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Undecidability

• To prove this theorem, we need to rule out all possible Turing machines!

• How can we possibly do this?
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Theorem: There exists an undecidable language.



The liar paradox
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Are you selecting option B as your answer to this question?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Yes

A: Yes

D: Yes

B: No



Code as data

• Plan: We will construct a language 𝑌 such that trying to decide 𝑌 

creates a liar paradox

• Key idea: A Turing machine 𝑀 can be encoded as a binary string 𝑀

• “Code as data”

• We’ll discuss this in more detail later
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Turing machines analyzing Turing machines

• After encoding a Turing machine 𝑀 as a binary string 𝑀 …

• We can use 𝑀  as the input for another Turing machine!

• Compilers, syntax highlighting, linters…
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Self-rejecting Turing machines

• Let 𝑀 be a TM

• A strange-but-legal thing we can do: Run 𝑀 on 𝑀

• Three possibilities:

• 𝑀 accepts 𝑀

• 𝑀 rejects 𝑀

• 𝑀 loops on 𝑀

• Definition: We say that a Turing machine 𝑀 is self-rejecting if 𝑀 rejects 𝑀
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Self-rejecting Turing machines

• Let SELF-REJECTORS = 𝑀 ∶ 𝑀 is a self-rejecting Turing machine
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Theorem: SELF-REJECTORS is undecidable 

Proof: Let 𝑀 be any TM. We’ll show that 𝑀 does not decide SELF-REJECTORS 

• If 𝑀 rejects 𝑀 , then 𝑀 ∈ SELF-REJECTORS, so 𝑀 ought to accept ⟨𝑀⟩ 

• If 𝑀 doesn’t reject 𝑀 , then 𝑀 ∉ SELF-REJECTORS, so 𝑀 ought to reject 𝑀  

• In either case, 𝑀 does the wrong thing!



Interpreting the theorem

• We proved that there does not exist a Turing machine that decides 

SELF-REJECTORS

• OBJECTION: “Yeah, but I don’t particularly care about Turing machines. 

Is there some other type of algorithm that decides SELF-REJECTORS?”

• RESPONSE: The Church-Turing Thesis
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



The Church-Turing Thesis

• The Church-Turing thesis says that the Turing machine model is a 

“correct” way of modeling arbitrary computation

• The thesis says that the informal concept of an “algorithm” is 

successfully captured by the rigorous definition of a Turing machine

• Consequence: It is really, truly impossible to design an algorithm that 

decides SELF-REJECTORS or any other undecidable language!
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Are Turing machines too powerful?

• OBJECTION: “The Turing machine’s infinite tape is unrealistic!”

• RESPONSE 1: If 𝑀 decides some language, then on any particular input 𝑤, 

the machine 𝑀 only uses a finite amount of space

• RESPONSE 2: We are studying idealized computation

• RESPONSE 3: We’re especially focused on impossibility results, so it’s better 

to err on the side of making the model extra powerful
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Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, we should add various 

bells and whistles to the Turing machine model.”

• Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing 

machine, except it has a transition function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R, S}

• S means the head does not move in this step

• (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)
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Left-right-stationary Turing machines

• The left-right-stationary Turing machine model is still realistic, even 

though we added an extra feature

• Is it a counterexample to the Church-Turing thesis?

• No!

• Let’s prove that the left-right-stationary Turing machine model is 

equivalent to the original Turing machine model

27



Left-right-stationary Turing machines

• Let 𝑌 be a language

• Proof: (3 slides) The “⇐” direction is trivial

28

Theorem: There exists a left-right-stationary TM that decides 𝑌 

if and only if there exists a TM that decides 𝑌



Left-right-stationary Turing machines

• Idea of the proof of “⇒” direction: Simulate S by doing L followed by R

• Details: Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿  be a left-right-stationary 

TM that decides 𝑌

• New TM: 𝑀′ = 𝑄′, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿′

• New set of states: 𝑄′ = 𝑄 ∪ 𝑞 ∶ 𝑞 ∈ 𝑄 , i.e., two disjoint copies of 𝑄
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Left-right-stationary Turing machines

• New transition function 𝛿′: 𝑄′ × Σ → 𝑄′ × Σ × L, R  given by:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, S , then 𝛿′ 𝑞, 𝑏 = 𝑞′, 𝑏′, L

• For every 𝑞 and 𝑏, we let 𝛿′ 𝑞, 𝑏 = 𝑞, 𝑏, R

• Exercise: Rigorously prove that 𝑀′ decides 𝑌
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

31

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion
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