
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 ⊆ 0, 1 ∗

• We say that 𝑀 decides 𝑌 if

• 𝑀 accepts every 𝑤 ∈ 𝑌, and

• 𝑀 rejects every 𝑤 ∈ 0, 1 ∗ ∖ 𝑌

• This is a mathematical model of what it means to “solve a problem”

3

Invalid inputs

• Informal problem statement: “Given a graph 𝐺, determine whether it is

connected”

• The same problem, formulated as a language:

CONNECTED = 𝐺 ∶ 𝐺 is a connected graph

• Suppose we want to decide CONNECTED

• If we are given 𝐺 where 𝐺 is a connected graph, we should accept

• If we are given 𝐺 where 𝐺 is a disconnected graph, we should reject
4

What if we are given 𝑤 ∈ 0, 1 ∗ that is not the encoding of any
graph?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: We can accept or reject, but we
must not loop

A: This situation cannot occur B: It doesn’t matter what we do

D: We must reject

Invalid inputs

• There can exist “invalid inputs” 𝑤 ∈ 0, 1 ∗ that do not encode graphs

• For example, suppose we are using adjacency matrices to encode graphs

• Then 𝐺 is a perfect square for every graph 𝐺

• Therefore, 10101 is not the encoding of any graph

• Technically, 10101 ∉ CONNECTED = 𝐺 ∶ 𝐺 is a connected graph

• To decide CONNECTED, a Turing machine would have to reject 10101

5

Checking for validity

• OBJECTION: “But the informal problem statement didn’t say anything

about rejecting invalid inputs!”

• “Given a graph 𝐺, determine whether it is connected”

• RESPONSE 1: It is not hard to check whether a given string 𝑤 is the

encoding of a graph

• Therefore, if we are trying to understand how hard/easy the problem is,

we don’t need to worry about invalid inputs
6

Promise problems

• RESPONSE 2: There are more

sophisticated ways of modeling “problems”

• Definition: A promise problem is a pair Π = 𝑌, 𝑁 , where 𝑌 and 𝑁 are

disjoint subsets of 0, 1 ∗

• E.g., 𝑌 = 𝐺 ∶ 𝐺 is a connected graph and 𝑁 = 𝐺 ∶ 𝐺 is a disconnected graph

• We say that a Turing machine 𝑀 solves Π if it accepts every 𝑤 ∈ 𝑌 and it

rejects every 𝑤 ∈ 𝑁
7

0, 1 ∗

𝑌 𝑁

Ignoring invalid inputs

• In this course, for simplicity’s sake and for historical reasons, we will

focus on languages rather than promise problems

• However, for simplicity’s sake, we will mostly ignore the issue of

invalid inputs

8

Summary

• “Deciding a language” is not a perfect mathematical model of “solving a

problem”…

• But it is a pretty good model

9

Decidable and undecidable

• Let 𝑌 be a language

• We say that 𝑌 is decidable if there exists a Turing machine 𝑀 that

decides 𝑌

• Otherwise, we say that 𝑌 is undecidable

10

Which problems

can be solved

through computation?

11

Which languages are decidable?

12

Examples

• PALINDROMES = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 is the same forward and backward

• PARITY = 𝑤 ∈ 0, 1 ∗ ∶ 𝑤 has an odd number of ones

• 𝑌 = 0𝐾 𝐾 ∶ 𝐾 is a positive integer

13

Out of those three languages, how many are decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Two

A: Zero B: One

D: Three

Is every language decidable?

14

Undecidability

• To prove this theorem, we need to rule out all possible Turing machines!

• How can we possibly do this?

15

Theorem: There exists an undecidable language.

The liar paradox

16

Are you selecting option B as your answer to this question?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: Yes

A: Yes

D: Yes

B: No

Code as data

• Plan: We will construct a language 𝑌 such that trying to decide 𝑌

creates a liar paradox

• Key idea: A Turing machine 𝑀 can be encoded as a binary string 𝑀

• “Code as data”

• We’ll discuss this in more detail later

17

Turing machines analyzing Turing machines

• After encoding a Turing machine 𝑀 as a binary string 𝑀 …

• We can use 𝑀 as the input for another Turing machine!

• Compilers, syntax highlighting, linters…

18

Self-rejecting Turing machines

• Let 𝑀 be a TM

• A strange-but-legal thing we can do: Run 𝑀 on 𝑀

• Three possibilities:

• 𝑀 accepts 𝑀

• 𝑀 rejects 𝑀

• 𝑀 loops on 𝑀

• Definition: We say that a Turing machine 𝑀 is self-rejecting if 𝑀 rejects 𝑀

19

Self-rejecting Turing machines

• Let SELF-REJECTORS = 𝑀 ∶ 𝑀 is a self-rejecting Turing machine

20

Theorem: SELF-REJECTORS is undecidable

Proof: Let 𝑀 be any TM. We’ll show that 𝑀 does not decide SELF-REJECTORS

• If 𝑀 rejects 𝑀 , then 𝑀 ∈ SELF-REJECTORS, so 𝑀 ought to accept ⟨𝑀⟩

• If 𝑀 doesn’t reject 𝑀 , then 𝑀 ∉ SELF-REJECTORS, so 𝑀 ought to reject 𝑀

• In either case, 𝑀 does the wrong thing!

Interpreting the theorem

• We proved that there does not exist a Turing machine that decides

SELF-REJECTORS

• OBJECTION: “Yeah, but I don’t particularly care about Turing machines.

Is there some other type of algorithm that decides SELF-REJECTORS?”

• RESPONSE: The Church-Turing Thesis

21

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

22

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

The Church-Turing Thesis

• The Church-Turing thesis says that the Turing machine model is a

“correct” way of modeling arbitrary computation

• The thesis says that the informal concept of an “algorithm” is

successfully captured by the rigorous definition of a Turing machine

• Consequence: It is really, truly impossible to design an algorithm that

decides SELF-REJECTORS or any other undecidable language!

23

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

24

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Are Turing machines too powerful?

• OBJECTION: “The Turing machine’s infinite tape is unrealistic!”

• RESPONSE 1: If 𝑀 decides some language, then on any particular input 𝑤,

the machine 𝑀 only uses a finite amount of space

• RESPONSE 2: We are studying idealized computation

• RESPONSE 3: We’re especially focused on impossibility results, so it’s better

to err on the side of making the model extra powerful

25

∞

Are Turing machines powerful enough?

• OBJECTION: “To encompass all possible algorithms, we should add various

bells and whistles to the Turing machine model.”

• Example: Left-Right-Stationary Turing Machine: Like an ordinary Turing

machine, except it has a transition function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R, S}

• S means the head does not move in this step

• (Exercise: Rigorously define NEXT, accepting, rejecting, etc.)

26

Left-right-stationary Turing machines

• The left-right-stationary Turing machine model is still realistic, even

though we added an extra feature

• Is it a counterexample to the Church-Turing thesis?

• No!

• Let’s prove that the left-right-stationary Turing machine model is

equivalent to the original Turing machine model

27

Left-right-stationary Turing machines

• Let 𝑌 be a language

• Proof: (3 slides) The “⇐” direction is trivial

28

Theorem: There exists a left-right-stationary TM that decides 𝑌

if and only if there exists a TM that decides 𝑌

Left-right-stationary Turing machines

• Idea of the proof of “⇒” direction: Simulate S by doing L followed by R

• Details: Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 be a left-right-stationary

TM that decides 𝑌

• New TM: 𝑀′ = 𝑄′, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿′

• New set of states: 𝑄′ = 𝑄 ∪ 𝑞 ∶ 𝑞 ∈ 𝑄 , i.e., two disjoint copies of 𝑄

29

Left-right-stationary Turing machines

• New transition function 𝛿′: 𝑄′ × Σ → 𝑄′ × Σ × L, R given by:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , then 𝛿′ 𝑞, 𝑏 = 𝛿(𝑞, 𝑏)

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, S , then 𝛿′ 𝑞, 𝑏 = 𝑞′, 𝑏′, L

• For every 𝑞 and 𝑏, we let 𝛿′ 𝑞, 𝑏 = 𝑞, 𝑏, R

• Exercise: Rigorously prove that 𝑀′ decides 𝑌

30

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

31

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Deciding a language
	Slide 4: Invalid inputs
	Slide 5: Invalid inputs
	Slide 6: Checking for validity
	Slide 7: Promise problems
	Slide 8: Ignoring invalid inputs
	Slide 9: Summary
	Slide 10: Decidable and undecidable
	Slide 11: Which problems can be solved through computation?
	Slide 12: Which languages are decidable?
	Slide 13: Examples
	Slide 14: Is every language decidable?
	Slide 15: Undecidability
	Slide 16: The liar paradox
	Slide 17: Code as data
	Slide 18: Turing machines analyzing Turing machines
	Slide 19: Self-rejecting Turing machines
	Slide 20: Self-rejecting Turing machines
	Slide 21: Interpreting the theorem
	Slide 22: The Church-Turing Thesis
	Slide 23: The Church-Turing Thesis
	Slide 24: The Church-Turing Thesis
	Slide 25: Are Turing machines too powerful?
	Slide 26: Are Turing machines powerful enough?
	Slide 27: Left-right-stationary Turing machines
	Slide 28: Left-right-stationary Turing machines
	Slide 29: Left-right-stationary Turing machines
	Slide 30: Left-right-stationary Turing machines
	Slide 31: The Church-Turing Thesis

