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Strings and languages

• Σ∗ is the set of all strings over the alphabet Σ (of any finite length)

• A binary language is a subset 𝑌 ⊆ {0, 1}∗

• Corresponding problem: Given 𝑤 ∈ 0, 1 ∗, figure out whether 𝑤 ∈ 𝑌

• To study other types of problems, we can often formulate a closely related 

language

• E.g., Exercise 14: Searching for large cliques
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Turing machines

• There is an infinitely long tape

• The machine uses a head to read from and write to the tape

• The machine also has an internal state

• “Local evolution” of a Turing machine is described by the transition 

function 𝛿: 𝑄 × Σ → 𝑄 × Σ × L, R
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Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 be a language

• We say that 𝑀 decides 𝑌 if 𝑀 accepts every 𝑤 ∈ 𝑌 and 𝑀 rejects every 

𝑤 ∈ 0, 1 ∗ ∖ 𝑌
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Input Turing Machine
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Reject

Run forever (“loop”)



The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

The problem of deciding whether a given string is in 𝑌 

can be “solved through computation” if and only if 

there is a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



The Physical Church-Turing Thesis 

• Let 𝑌 ⊆ 0, 1 ∗
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Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝑌 

if and only if there is a Turing machine that decides 𝑌.



Code as data

• A Turing machine 𝑀 represents an algorithm

• At the same time, 𝑀 can be encoded as a string 𝑀

• This string 𝑀  could be the input or output of a different algorithm!
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Universal Turing machines
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Theorem: There exists a Turing machine 𝑈 such that for every Turing 

machine 𝑀 and every 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on input 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.



Universal Turing machines

• If you are stranded on an alien planet and you are trying to build a 

computer, your job is to build a universal Turing machine

• A universal Turing machine can be “programmed” to do anything that 

is computationally possible

13



Undecidability

• SELF-REJECTORS = 𝑀 ∶ 𝑀 rejects 𝑀

• We can rule out all possible algorithms!
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Theorem: SELF-REJECTORS is undecidable



Reductions

• To prove that 𝑌NEW is undecidable:

• Identify some known undecidable language 𝑌OLD

• Assume for the sake of contradiction that 𝑌NEW is decidable

• Design an algorithm that decides 𝑌OLD, using hypothetical device deciding 𝑌NEW

• Example: HALT = 𝑀, 𝑤 ∶ 𝑀 halts on 𝑤
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Theorem: HALT is undecidable



Post’s Correspondence Problem

• Input: A set of “dominos”

• Goal: Determine whether it is possible to generate a “match”

in which the sequence of top symbols equals the sequence of bottom symbols
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Theorem: PCP is undecidable



Asymptotic analysis
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Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛  grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛  is at most 𝑐 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛  and 𝑓 𝑛  grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛  is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛  grows more quickly than 𝑓 𝑛 >



Polynomial-time computation

• We mainly focus on the distinction between polynomial-time 

algorithms and exponential-time algorithms

• We proved that 𝑛𝑘 = 𝑜 2𝑛  for every constant 𝑘

• Exponential-time algorithms are almost worthless

• Polynomial-time algorithms are usually usable
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Complexity classes

• A complexity class is a set of binary languages

• 𝑌 ∈ P if 𝑌 can be decided by a polynomial-time TM

• 𝑌 ∈ PSPACE if 𝑌 can be decided by a polynomial-space TM

• 𝑌 ∈ EXP if 𝑌 can be decided by a TM with time complexity 2poly 𝑛
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Randomized Turing machines
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1 1 0Input tape 

Randomness tape 

⊔ ⊔1⊔
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The complexity class NP

• A language 𝑌 is in NP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝑌, we have Pr 𝑀 accepts 𝑤 ≠ 0

• For every 𝑤 ∉ 𝑌, we have Pr 𝑀 accepts 𝑤 = 0

• Equivalent: Every 𝑤 ∈ 𝑌 has a certificate of membership, and 

certificates can be verified in (deterministic) polynomial time
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The complexity class BPP

• A language 𝑌 is in BPP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝑌, we have Pr 𝑀 accepts 𝑤 ≥ 2/3

• For every 𝑤 ∉ 𝑌, we have Pr 𝑀 rejects 𝑤 ≥ 2/3

• Amplification Lemma: We can replace 2/3 with 1 − 1/2𝑛𝑘
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Example: Polynomial identity testing

• Given: An arithmetic formula 𝐹

• Goal: Figure out whether 𝐹 ≡ 0

• Algorithm idea: Pick Ԧ𝑥 at random and check whether 𝐹 Ԧ𝑥 = 0
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×

+ +
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𝑥2−1
Theorem: PIT ∈ BPP



Relationships between complexity classes

• P ⊆ BPP and P ⊆ NP because we can elect to not use our random bits

• BPP ⊆ PSPACE and NP ⊆ PSPACE because we can try all possible 

settings of the random tape (“brute-force derandomization/search”)

• PSPACE ⊆ EXP because a polynomial-space algorithm that uses more 

than exponential time would repeat a configuration (Exercise 5), hence it 

would get stuck in an infinite loop
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Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦  using as 

little communication as possible
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Alice holds 𝑥 Bob holds 𝑦

Communication channel



Communication complexity of EQ𝑛

• EQ𝑛 𝑥, 𝑦 = 1 ⇔ 𝑥 = 𝑦
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Theorem: Every deterministic communication protocol that 

computes EQ𝑛 has cost at least 𝑛 + 1

Theorem: There is a randomized communication protocol with 

cost 𝑂 log 𝑛  that computes EQ𝑛 with high probability



P vs. BPP

• To prove that certain problems are intractable, we need a 

mathematical model of tractability

• P and BPP are both reasonable models of tractability

• Which should we use?

• Conjecture: P = BPP, so it’s a moot point
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Extended Church-Turing Thesis

• The Extended Church-Turing Thesis is probably false because of 

quantum computing
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Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device 

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.



The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be any “reasonable” (time-constructible) function

• Consequence: P ≠ EXP
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Time Hierarchy Theorem: There is a language 𝑌 ∈ TIME 𝑇4  

such that 𝑌 ∉ TIME 𝑜 𝑇



Mapping reductions

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Definition: 𝑌1 ≤P 𝑌2 if there is a 

poly-time computable function 

Ψ: 0, 1 ∗ → 0, 1 ∗ such that

• 𝑤 ∈ 𝑌1 ⇒ Ψ 𝑤 ∈ 𝑌2

• 𝑤 ∉ 𝑌1 ⇒ Ψ 𝑤 ∉ 𝑌2
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0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ

Ψ



EXP-completeness

• We say that 𝑌 is EXP-hard if 𝑍 ≤P 𝑌 for every 𝑍 ∈ EXP

• We say that 𝑌 is EXP-complete if 𝑌 is EXP-hard and 𝑌 ∈ EXP

• EXP-complete languages are not in P

• Example: BOUNDED-HALT is EXP-complete
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EXP-completeness
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P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT



NP-completeness

• A language 𝑌 is NP-complete 

if 𝑌 ∈ NP and 𝑍 ≤P 𝑌 for 

every 𝑍 ∈ NP
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P

NP

NP-complete

NP-hard



Disjunctive/conjunctive normal form

• A literal is a Boolean variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• DNF formula: OR of ANDs of literals

• “Disjunction of terms”

• CNF formula: AND of ORs of literals

• “Conjunction of clauses”
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Disjunctive/conjunctive normal form
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Theorem: Every function 𝑓: {0, 1}𝑛 → 0, 1  can be represented by a 

CNF formula with at most 2𝑛 clauses and at most 𝑛 literals per clause

Theorem: Every function 𝑓: {0, 1}𝑛 → 0, 1  can be represented by a 

DNF formula with at most 2𝑛 terms and at most 𝑛 literals per term



Boolean circuits

• A “circuit” is a network of 

AND/OR/NOT gates applied to 

Boolean variables
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∨

∧ ∧

∨ ∨
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¬ ¬



Circuit complexity

• CNF representation ⇒ Every function 𝑓: {0, 1}𝑛 → {0, 1}𝑚 can be 

computed by a circuit of size 𝑂 2𝑛 ⋅ 𝑛 ⋅ 𝑚

• Exercise 22: There exists a function 𝑓: {0, 1}𝑛 → {0, 1} with circuit 

complexity Ω 2𝑛/𝑛
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Polynomial-size circuits

• A language 𝑌 is in PSIZE if for every 𝑛, there is a circuit of size 

poly 𝑛  that decides 𝑌 restricted to inputs of length 𝑛

• Polynomial-Time Algorithm ⇒ Polynomial-Size Circuits

• Exercise 23: P ≠ PSIZE
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Theorem: P ⊆ PSIZE



Adleman’s theorem

• Tantalizingly similar to the statement “P = BPP”
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Adleman’s Theorem: BPP ⊆ PSIZE



Circuit satisfiability

• CIRCUIT-SAT = 𝐶 ∶ 𝐶 is a satisfiable circuit
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Theorem: CIRCUIT-SAT is NP-complete



The Cook-Levin Theorem

• Definition: A 𝑘-CNF formula is an AND of ORs of at most 𝑘 literals

• Definition: 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}
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The Cook-Levin Theorem: 3-SAT is NP-complete



More NP-complete problems

• CLIQUE

• UNDIRECTED-HAM-CYCLE

• 3-COLORABLE (Exercise 26)

• SUBSET-SUM

• KNAPSACK
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The P vs. NP problem

• We conjecture that P ≠ NP: Solving and verifying are different

• A proof that P = NP would change the world

• *Assuming the proof gives us truly practical algorithms

• We could solve countless important problems in polynomial time 

• Hackers could break our encryption schemes in polynomial time 
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The complexity class NP ∩ coNP

• FACTOR = 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑅

• The prime factorization of 𝐾 can be used to certify that 𝐾 does have a 

small factor or to certify that 𝐾 does not have a small factor

• Consequence: FACTOR is probably not NP-complete
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Theorem: FACTOR ∈ NP ∩ coNP
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P

NP

NP-hard

FACTOR

coNP-hard

NP ∩ coNP

coNP



Approximation algorithms

• We can find a “99% optimal” solution to a given instance of the 

knapsack problem in polynomial time 

• If P ≠ NP, then we cannot even find a “1% optimal” solution to a 

given instance of the clique problem in polynomial time 
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Thank you!

• Teaching you has been a privilege

• I hope you’ve enjoyed taking the course as much as I’ve enjoyed 

teaching it

• Please fill out the College Course Feedback Form using My.UChicago 

(deadline is June 1)
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Three big lessons

1. We can study all possible algorithms simultaneously by developing 

mathematical models of computation!

2. Computation has severe unavoidable limitations!

3. Computer science is deep / profound / sublime, not merely useful!

• What is the nature of the physical universe?

• What is the nature of the human condition?

• See you at office hours and the final exam!

49


	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2025 Instructor: William Hoza
	Slide 2: Course Review
	Slide 3: Which problems can be solved through computation?
	Slide 4: Strings and languages
	Slide 5: Which problems can be solved through computation?
	Slide 6: Turing machines
	Slide 7: Which problems can be solved through computation?
	Slide 8: Deciding a language
	Slide 9: The Church-Turing Thesis
	Slide 10: The Physical Church-Turing Thesis 
	Slide 11: Code as data
	Slide 12: Universal Turing machines
	Slide 13: Universal Turing machines
	Slide 14: Undecidability
	Slide 15: Reductions
	Slide 16: Post’s Correspondence Problem
	Slide 17: Asymptotic analysis
	Slide 18: Polynomial-time computation
	Slide 19: Complexity classes
	Slide 20: Randomized Turing machines
	Slide 21: The complexity class NP
	Slide 22: The complexity class BPP
	Slide 23: Example: Polynomial identity testing
	Slide 24: Relationships between complexity classes
	Slide 25
	Slide 26: Communication complexity
	Slide 27: Communication complexity of subscript base , EQ , end base , sub n 
	Slide 28: P vs. BPP
	Slide 29: Extended Church-Turing Thesis
	Slide 30: The Time Hierarchy Theorem
	Slide 31: Mapping reductions
	Slide 32: EXP-completeness
	Slide 33: EXP-completeness
	Slide 34: NP-completeness
	Slide 35: Disjunctive/conjunctive normal form
	Slide 36: Disjunctive/conjunctive normal form
	Slide 37: Boolean circuits
	Slide 38: Circuit complexity
	Slide 39: Polynomial-size circuits
	Slide 40: Adleman’s theorem
	Slide 41: Circuit satisfiability
	Slide 42: The Cook-Levin Theorem
	Slide 43: More NP-complete problems
	Slide 44: The P vs. NP problem
	Slide 45: The complexity class NP intersection coNP
	Slide 46
	Slide 47: Approximation algorithms
	Slide 48: Thank you!
	Slide 49: Three big lessons

