
1

CMSC 28100

Introduction to 
Complexity Theory

Spring 2025
Instructor: William Hoza



Course Review

2



Which problems

can be solved

through computation?

3



Strings and languages

• Σ∗ is the set of all strings over the alphabet Σ (of any finite length)

• A binary language is a subset 𝑌 ⊆ {0, 1}∗

• Corresponding problem: Given 𝑤 ∈ 0, 1 ∗, figure out whether 𝑤 ∈ 𝑌

• To study other types of problems, we can often formulate a closely related 

language

• E.g., Exercise 14: Searching for large cliques

4



Which problems

can be solved

through computation?

5



Turing machines

• There is an infinitely long tape

• The machine uses a head to read from and write to the tape

• The machine also has an internal state

• “Local evolution” of a Turing machine is described by the transition 

function 𝛿: 𝑄 × Σ → 𝑄 × Σ × L, R

6

1 1 0 ⊔ ⊔1⊔



Which problems

can be solved

through computation?

7



Deciding a language

• Let 𝑀 be a Turing machine and let 𝑌 be a language

• We say that 𝑀 decides 𝑌 if 𝑀 accepts every 𝑤 ∈ 𝑌 and 𝑀 rejects every 

𝑤 ∈ 0, 1 ∗ ∖ 𝑌

8

Input Turing Machine

Accept

Reject

Run forever (“loop”)



The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

9

Church-Turing Thesis:

The problem of deciding whether a given string is in 𝑌 

can be “solved through computation” if and only if 

there is a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



The Physical Church-Turing Thesis 

• Let 𝑌 ⊆ 0, 1 ∗

10

Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝑌 

if and only if there is a Turing machine that decides 𝑌.



Code as data

• A Turing machine 𝑀 represents an algorithm

• At the same time, 𝑀 can be encoded as a string 𝑀

• This string 𝑀  could be the input or output of a different algorithm!

11



Universal Turing machines

12

Theorem: There exists a Turing machine 𝑈 such that for every Turing 

machine 𝑀 and every 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on input 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.



Universal Turing machines

• If you are stranded on an alien planet and you are trying to build a 

computer, your job is to build a universal Turing machine

• A universal Turing machine can be “programmed” to do anything that 

is computationally possible

13



Undecidability

• SELF-REJECTORS = 𝑀 ∶ 𝑀 rejects 𝑀

• We can rule out all possible algorithms!

14

Theorem: SELF-REJECTORS is undecidable



Reductions

• To prove that 𝑌NEW is undecidable:

• Identify some known undecidable language 𝑌OLD

• Assume for the sake of contradiction that 𝑌NEW is decidable

• Design an algorithm that decides 𝑌OLD, using hypothetical device deciding 𝑌NEW

• Example: HALT = 𝑀, 𝑤 ∶ 𝑀 halts on 𝑤

15

Theorem: HALT is undecidable



Post’s Correspondence Problem

• Input: A set of “dominos”

• Goal: Determine whether it is possible to generate a “match”

in which the sequence of top symbols equals the sequence of bottom symbols

16

𝑡1

𝑏1

𝑡2

𝑏2

𝑡3

𝑏3

𝑡𝑘

𝑏𝑘
⋯

𝑡𝑖1

𝑏𝑖1

𝑡𝑖2

𝑏𝑖2

𝑡𝑖3

𝑏𝑖3

𝑡𝑖4

𝑏𝑖4

𝑡𝑖5

𝑏𝑖5

𝑡𝑖𝑛

𝑏𝑖𝑛

⋯

Theorem: PCP is undecidable



Asymptotic analysis

17

Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛  grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛  is at most 𝑐 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛  and 𝑓 𝑛  grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛  is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛  grows more quickly than 𝑓 𝑛 >



Polynomial-time computation

• We mainly focus on the distinction between polynomial-time 

algorithms and exponential-time algorithms

• We proved that 𝑛𝑘 = 𝑜 2𝑛  for every constant 𝑘

• Exponential-time algorithms are almost worthless

• Polynomial-time algorithms are usually usable

18



Complexity classes

• A complexity class is a set of binary languages

• 𝑌 ∈ P if 𝑌 can be decided by a polynomial-time TM

• 𝑌 ∈ PSPACE if 𝑌 can be decided by a polynomial-space TM

• 𝑌 ∈ EXP if 𝑌 can be decided by a TM with time complexity 2poly 𝑛

19



Randomized Turing machines

20

1 1 0Input tape 

Randomness tape 

⊔ ⊔1⊔

⊔



The complexity class NP

• A language 𝑌 is in NP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝑌, we have Pr 𝑀 accepts 𝑤 ≠ 0

• For every 𝑤 ∉ 𝑌, we have Pr 𝑀 accepts 𝑤 = 0

• Equivalent: Every 𝑤 ∈ 𝑌 has a certificate of membership, and 

certificates can be verified in (deterministic) polynomial time

21



The complexity class BPP

• A language 𝑌 is in BPP if there is a polynomial-time randomized Turing 

machine 𝑀 such that:

• For every 𝑤 ∈ 𝑌, we have Pr 𝑀 accepts 𝑤 ≥ 2/3

• For every 𝑤 ∉ 𝑌, we have Pr 𝑀 rejects 𝑤 ≥ 2/3

• Amplification Lemma: We can replace 2/3 with 1 − 1/2𝑛𝑘

22



Example: Polynomial identity testing

• Given: An arithmetic formula 𝐹

• Goal: Figure out whether 𝐹 ≡ 0

• Algorithm idea: Pick Ԧ𝑥 at random and check whether 𝐹 Ԧ𝑥 = 0

23

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1
Theorem: PIT ∈ BPP



Relationships between complexity classes

• P ⊆ BPP and P ⊆ NP because we can elect to not use our random bits

• BPP ⊆ PSPACE and NP ⊆ PSPACE because we can try all possible 

settings of the random tape (“brute-force derandomization/search”)

• PSPACE ⊆ EXP because a polynomial-space algorithm that uses more 

than exponential time would repeat a configuration (Exercise 5), hence it 

would get stuck in an infinite loop

24



25

P

EXP

Decidable languages

NP

PSPACE



Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦  using as 

little communication as possible

26

Alice holds 𝑥 Bob holds 𝑦

Communication channel



Communication complexity of EQ𝑛

• EQ𝑛 𝑥, 𝑦 = 1 ⇔ 𝑥 = 𝑦

27

Theorem: Every deterministic communication protocol that 

computes EQ𝑛 has cost at least 𝑛 + 1

Theorem: There is a randomized communication protocol with 

cost 𝑂 log 𝑛  that computes EQ𝑛 with high probability



P vs. BPP

• To prove that certain problems are intractable, we need a 

mathematical model of tractability

• P and BPP are both reasonable models of tractability

• Which should we use?

• Conjecture: P = BPP, so it’s a moot point

28



Extended Church-Turing Thesis

• The Extended Church-Turing Thesis is probably false because of 

quantum computing

29

Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device 

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.



The Time Hierarchy Theorem

• Let 𝑇: ℕ → ℕ be any “reasonable” (time-constructible) function

• Consequence: P ≠ EXP

30

Time Hierarchy Theorem: There is a language 𝑌 ∈ TIME 𝑇4  

such that 𝑌 ∉ TIME 𝑜 𝑇



Mapping reductions

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Definition: 𝑌1 ≤P 𝑌2 if there is a 

poly-time computable function 

Ψ: 0, 1 ∗ → 0, 1 ∗ such that

• 𝑤 ∈ 𝑌1 ⇒ Ψ 𝑤 ∈ 𝑌2

• 𝑤 ∉ 𝑌1 ⇒ Ψ 𝑤 ∉ 𝑌2

31

0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ

Ψ



EXP-completeness

• We say that 𝑌 is EXP-hard if 𝑍 ≤P 𝑌 for every 𝑍 ∈ EXP

• We say that 𝑌 is EXP-complete if 𝑌 is EXP-hard and 𝑌 ∈ EXP

• EXP-complete languages are not in P

• Example: BOUNDED-HALT is EXP-complete

32



EXP-completeness

33

P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT



NP-completeness

• A language 𝑌 is NP-complete 

if 𝑌 ∈ NP and 𝑍 ≤P 𝑌 for 

every 𝑍 ∈ NP

34

P

NP

NP-complete

NP-hard



Disjunctive/conjunctive normal form

• A literal is a Boolean variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• DNF formula: OR of ANDs of literals

• “Disjunction of terms”

• CNF formula: AND of ORs of literals

• “Conjunction of clauses”

35



Disjunctive/conjunctive normal form

36

Theorem: Every function 𝑓: {0, 1}𝑛 → 0, 1  can be represented by a 

CNF formula with at most 2𝑛 clauses and at most 𝑛 literals per clause

Theorem: Every function 𝑓: {0, 1}𝑛 → 0, 1  can be represented by a 

DNF formula with at most 2𝑛 terms and at most 𝑛 literals per term



Boolean circuits

• A “circuit” is a network of 

AND/OR/NOT gates applied to 

Boolean variables

37

∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

𝑥1 𝑥2 𝑥3 𝑥4

¬ ¬ ¬ ¬

¬ ¬



Circuit complexity

• CNF representation ⇒ Every function 𝑓: {0, 1}𝑛 → {0, 1}𝑚 can be 

computed by a circuit of size 𝑂 2𝑛 ⋅ 𝑛 ⋅ 𝑚

• Exercise 22: There exists a function 𝑓: {0, 1}𝑛 → {0, 1} with circuit 

complexity Ω 2𝑛/𝑛

38



Polynomial-size circuits

• A language 𝑌 is in PSIZE if for every 𝑛, there is a circuit of size 

poly 𝑛  that decides 𝑌 restricted to inputs of length 𝑛

• Polynomial-Time Algorithm ⇒ Polynomial-Size Circuits

• Exercise 23: P ≠ PSIZE

39

Theorem: P ⊆ PSIZE



Adleman’s theorem

• Tantalizingly similar to the statement “P = BPP”

40

Adleman’s Theorem: BPP ⊆ PSIZE



Circuit satisfiability

• CIRCUIT-SAT = 𝐶 ∶ 𝐶 is a satisfiable circuit

41

Theorem: CIRCUIT-SAT is NP-complete



The Cook-Levin Theorem

• Definition: A 𝑘-CNF formula is an AND of ORs of at most 𝑘 literals

• Definition: 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

42

The Cook-Levin Theorem: 3-SAT is NP-complete



More NP-complete problems

• CLIQUE

• UNDIRECTED-HAM-CYCLE

• 3-COLORABLE (Exercise 26)

• SUBSET-SUM

• KNAPSACK

43



The P vs. NP problem

• We conjecture that P ≠ NP: Solving and verifying are different

• A proof that P = NP would change the world

• *Assuming the proof gives us truly practical algorithms

• We could solve countless important problems in polynomial time 

• Hackers could break our encryption schemes in polynomial time 

44



The complexity class NP ∩ coNP

• FACTOR = 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑅

• The prime factorization of 𝐾 can be used to certify that 𝐾 does have a 

small factor or to certify that 𝐾 does not have a small factor

• Consequence: FACTOR is probably not NP-complete

45

Theorem: FACTOR ∈ NP ∩ coNP



46

P

NP

NP-hard

FACTOR

coNP-hard

NP ∩ coNP

coNP



Approximation algorithms

• We can find a “99% optimal” solution to a given instance of the 

knapsack problem in polynomial time 

• If P ≠ NP, then we cannot even find a “1% optimal” solution to a 

given instance of the clique problem in polynomial time 

47



Thank you!

• Teaching you has been a privilege

• I hope you’ve enjoyed taking the course as much as I’ve enjoyed 

teaching it

• Please fill out the College Course Feedback Form using My.UChicago 

(deadline is June 1)

48



Three big lessons

1. We can study all possible algorithms simultaneously by developing 

mathematical models of computation!

2. Computation has severe unavoidable limitations!

3. Computer science is deep / profound / sublime, not merely useful!

• What is the nature of the physical universe?

• What is the nature of the human condition?

• See you at office hours and the final exam!

49


	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2025 Instructor: William Hoza
	Slide 2: Course Review
	Slide 3: Which problems can be solved through computation?
	Slide 4: Strings and languages
	Slide 5: Which problems can be solved through computation?
	Slide 6: Turing machines
	Slide 7: Which problems can be solved through computation?
	Slide 8: Deciding a language
	Slide 9: The Church-Turing Thesis
	Slide 10: The Physical Church-Turing Thesis 
	Slide 11: Code as data
	Slide 12: Universal Turing machines
	Slide 13: Universal Turing machines
	Slide 14: Undecidability
	Slide 15: Reductions
	Slide 16: Post’s Correspondence Problem
	Slide 17: Asymptotic analysis
	Slide 18: Polynomial-time computation
	Slide 19: Complexity classes
	Slide 20: Randomized Turing machines
	Slide 21: The complexity class NP
	Slide 22: The complexity class BPP
	Slide 23: Example: Polynomial identity testing
	Slide 24: Relationships between complexity classes
	Slide 25
	Slide 26: Communication complexity
	Slide 27: Communication complexity of subscript base , EQ , end base , sub n 
	Slide 28: P vs. BPP
	Slide 29: Extended Church-Turing Thesis
	Slide 30: The Time Hierarchy Theorem
	Slide 31: Mapping reductions
	Slide 32: EXP-completeness
	Slide 33: EXP-completeness
	Slide 34: NP-completeness
	Slide 35: Disjunctive/conjunctive normal form
	Slide 36: Disjunctive/conjunctive normal form
	Slide 37: Boolean circuits
	Slide 38: Circuit complexity
	Slide 39: Polynomial-size circuits
	Slide 40: Adleman’s theorem
	Slide 41: Circuit satisfiability
	Slide 42: The Cook-Levin Theorem
	Slide 43: More NP-complete problems
	Slide 44: The P vs. NP problem
	Slide 45: The complexity class NP intersection coNP
	Slide 46
	Slide 47: Approximation algorithms
	Slide 48: Thank you!
	Slide 49: Three big lessons

