CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

1

Course Review

Which problems

can be solved

through computation?

Strings and languages

- Σ^* is the set of all strings over the alphabet Σ (of any finite length)
- A binary language is a subset $Y \subseteq \{0, 1\}^*$
- Corresponding problem: Given $w \in \{0, 1\}^*$, figure out whether $w \in Y$
 - To study other types of problems, we can often formulate a closely related language
 - E.g., Exercise 14: Searching for large cliques

Which problems

can be solved

through computation?

- There is an infinitely long tape
- The machine uses a head to read from and write to the tape
- The machine also has an internal state
- "Local evolution" of a Turing machine is described by the transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$

Which problems can be solved

through computation?

Deciding a language

- Let *M* be a Turing machine and let *Y* be a language
- We say that M decides Y if M accepts every $w \in Y$ and M rejects every $w \in \{0, 1\}^* \setminus Y$

The Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Church-Turing Thesis:

The problem of deciding whether a given string is in Y

can be "solved through computation" if and only if

there is a Turing machine that decides Y.

The Physical Church-Turing Thesis

• Let $Y \subseteq \{0, 1\}^*$

Physical Church-Turing Thesis:

It is physically possible to build a device that decides Y

if and only if there is a Turing machine that decides Y.

Code as data

- A Turing machine *M* represents an algorithm
- At the same time, M can be encoded as a string $\langle M \rangle$
- This string $\langle M \rangle$ could be the input or output of a different algorithm!

Universal Turing machines

Theorem: There exists a Turing machine U such that for every Turing machine M and every $w \in \{0, 1\}^*$:

- If M accepts w, then U accepts $\langle M, w \rangle$.
- If M rejects w, then U rejects $\langle M, w \rangle$.
- If M loops on input w, then U loops on $\langle M, w \rangle$.

Universal Turing machines

- If you are stranded on an alien planet and you are trying to build a computer, your job is to build a universal Turing machine
- A universal Turing machine can be "programmed" to do anything that is computationally possible

```
Undecidability
```

• SELF-REJECTORS = { $\langle M \rangle$: *M* rejects $\langle M \rangle$ }

Theorem: SELF-REJECTORS is undecidable

• We can rule out all possible algorithms!

Reductions

- To prove that *Y*_{NEW} is undecidable:
 - Identify some known undecidable language Y_{OLD}
 - Assume for the sake of contradiction that Y_{NEW} is decidable
 - Design an algorithm that decides Y_{OLD} , using hypothetical device deciding Y_{NEW}
- Example: HALT = { $\langle M, w \rangle$: *M* halts on *w*}

Theorem: HALT is undecidable

Post's Correspondence Problem

• Input: A set of "dominos"

• Goal: Determine whether it is possible to generate a "match"

in which the sequence of top symbols equals the sequence of bottom symbols

Theorem: PCP is undecidable

Asymptotic analysis

Notation	In words	Analogy
T is $o(f)$	T(n) grows more slowly than $f(n)$	<
T is $O(f)$	$T(n)$ is at most $c \cdot f(n)$	\leq
T is $\Theta(f)$	T(n) and $f(n)$ grow at the same rate	=
T is $\Omega(f)$	$T(n)$ is at least $c \cdot f(n)$	\geq
T is $\omega(f)$	T(n) grows more quickly than $f(n)$	>

Polynomial-time computation

- We mainly focus on the distinction between polynomial-time algorithms and exponential-time algorithms
- We proved that $n^k = o(2^n)$ for every constant k
- Exponential-time algorithms are almost worthless
- Polynomial-time algorithms are usually usable

Complexity classes

- A complexity class is a set of binary languages
- $Y \in \mathbf{P}$ if Y can be decided by a polynomial-time TM
- $Y \in \underline{PSPACE}$ if Y can be decided by a polynomial-space TM
- $Y \in EXP$ if Y can be decided by a TM with time complexity $2^{poly(n)}$

Randomized Turing machines

The complexity class NP

- A language Y is in NP if there is a polynomial-time randomized Turing machine M such that:
 - For every $w \in Y$, we have $\Pr[M \text{ accepts } w] \neq 0$
 - For every $w \notin Y$, we have $\Pr[M \text{ accepts } w] = 0$
- Equivalent: Every $w \in Y$ has a certificate of membership, and certificates can be verified in (deterministic) polynomial time

The complexity class BPP

- A language Y is in BPP if there is a polynomial-time randomized Turing machine M such that:
 - For every $w \in Y$, we have $\Pr[M \text{ accepts } w] \ge 2/3$
 - For every $w \notin Y$, we have $\Pr[M \text{ rejects } w] \ge 2/3$
- Amplification Lemma: We can replace 2/3 with $1 1/2^{n^k}$

Example: Polynomial identity testing

- **Given:** An arithmetic formula *F*
- Goal: Figure out whether $F \equiv 0$

Theorem: $PIT \in BPP$

• Algorithm idea: Pick \vec{x} at random and check whether $F(\vec{x}) = 0$

Relationships between complexity classes

- $P \subseteq BPP$ and $P \subseteq NP$ because we can elect to not use our random bits
- BPP ⊆ PSPACE and NP ⊆ PSPACE because we can try all possible settings of the random tape ("brute-force derandomization/search")
- PSPACE ⊆ EXP because a polynomial-space algorithm that uses more than exponential time would repeat a configuration (Exercise 5), hence it would get stuck in an infinite loop

Communication complexity

• Goal: Compute f(x, y) using as little communication as possible

Alice holds x

26

Communication complexity of EQ_n

• $EQ_n(x, y) = 1 \Leftrightarrow x = y$

Theorem: Every deterministic communication protocol that computes EQ_n has cost at least n + 1

Theorem: There is a randomized communication protocol with cost O(log n) that computes EQ_n with high probability

P vs. BPP

- To prove that certain problems are intractable, we need a mathematical model of tractability
- P and BPP are both reasonable models of tractability
- Which should we use?
- **Conjecture:** P = BPP, so it's a moot point

Extended Church-Turing Thesis

Extended Church-Turing Thesis:

For every $Y \subseteq \{0, 1\}^*$, it is physically possible to build a device

that decides Y in polynomial time if and only if $Y \in P$.

• The Extended Church-Turing Thesis is probably false because of

quantum computing

The Time Hierarchy Theorem

• Let $T: \mathbb{N} \to \mathbb{N}$ be any "reasonable" (time-constructible) function

Time Hierarchy Theorem: There is a language $Y \in \text{TIME}(T^4)$ such that $Y \notin \text{TIME}(o(T))$

• Consequence: $P \neq EXP$

Mapping reductions

- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- Definition: $Y_1 \leq_P Y_2$ if there is a poly-time computable function $\Psi: \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that
 - $w \in Y_1 \Rightarrow \Psi(w) \in Y_2$
 - $w \notin Y_1 \Rightarrow \Psi(w) \notin Y_2$

EXP-completeness

- We say that Y is EXP-hard if $Z \leq_P Y$ for every $Z \in EXP$
- We say that *Y* is EXP-complete if *Y* is EXP-hard and $Y \in EXP$
- EXP-complete languages are not in P
- Example: BOUNDED-HALT is EXP-complete

Disjunctive/conjunctive normal form

- A literal is a Boolean variable or its negation (x_i or \bar{x}_i)
- DNF formula: OR of ANDs of literals
 - "Disjunction of terms"
- CNF formula: AND of ORs of literals
 - "Conjunction of clauses"

Disjunctive/conjunctive normal form

Theorem: Every function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ can be represented by a

DNF formula with at most 2^n terms and at most n literals per term

Theorem: Every function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ can be represented by a CNF formula with at most 2^n clauses and at most n literals per clause

Boolean circuits

• A "circuit" is a network of

AND/OR/NOT gates applied to

Boolean variables

Circuit complexity

- CNF representation \Rightarrow Every function $f: \{0, 1\}^n \rightarrow \{0, 1\}^m$ can be computed by a circuit of size $O(2^n \cdot n \cdot m)$
- Exercise 22: There exists a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ with circuit complexity $\Omega(2^n/n)$

Polynomial-size circuits

• A language Y is in PSIZE if for every n, there is a circuit of size poly(n) that decides Y restricted to inputs of length n

- Polynomial-Time Algorithm ⇒ Polynomial-Size Circuits
- Exercise 23: $P \neq PSIZE$

Adleman's theorem

Adleman's Theorem: $BPP \subseteq PSIZE$

• Tantalizingly similar to the statement "P = BPP"

Circuit satisfiability

• CIRCUIT-SAT = { $\langle C \rangle$: *C* is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete

The Cook-Levin Theorem

- **Definition:** A *k*-CNF formula is an AND of ORs of at most *k* literals
- **Definition:** k-SAT = { $\langle \phi \rangle : \phi$ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

More NP-complete problems

- CLIQUE
- UNDIRECTED-HAM-CYCLE
- 3-COLORABLE (Exercise 26)
- SUBSET-SUM
- KNAPSACK

The P vs. NP problem

- We conjecture that $P \neq NP$: Solving and verifying are different
- A proof that P = NP would change the world
 - *Assuming the proof gives us truly practical algorithms
- We could solve countless important problems in polynomial time
- Hackers could break our encryption schemes in polynomial time

The complexity class NP \cap coNP

• FACTOR = { $\langle K, R \rangle$: *K* has a prime factor $p \le R$ }

Theorem: FACTOR \in NP \cap coNP

- The prime factorization of *K* can be used to certify that *K* does have a small factor or to certify that *K* does not have a small factor
- Consequence: FACTOR is probably not NP-complete

Approximation algorithms

- We can find a "99% optimal" solution to a given instance of the knapsack problem in polynomial time 🙄
- If $P \neq NP$, then we cannot even find a "1% optimal" solution to a given instance of the clique problem in polynomial time 🙁

Thank you!

- Teaching you has been a privilege
- I hope you've enjoyed taking the course as much as I've enjoyed teaching it
- Please fill out the College Course Feedback Form using My.UChicago (deadline is June 1)

Three big lessons

- 1. We can study all possible algorithms simultaneously by developing mathematical models of computation!
- 2. Computation has severe unavoidable limitations!
- 3. Computer science is deep / profound / sublime, not merely useful!
 - What is the nature of the physical universe?
 - What is the nature of the human condition?
- See you at office hours and the final exam!