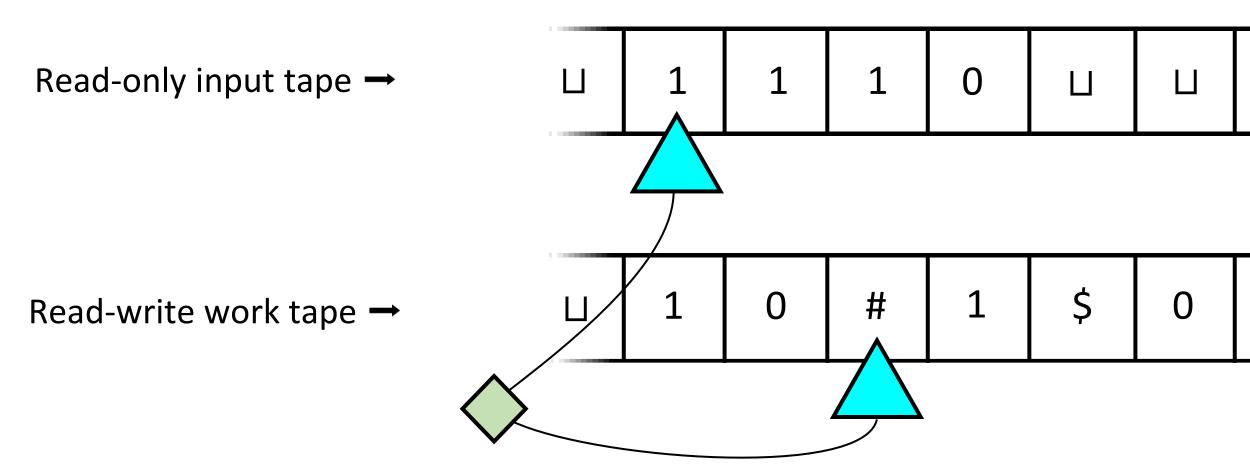
CMSC 28100

Introduction to Complexity Theory

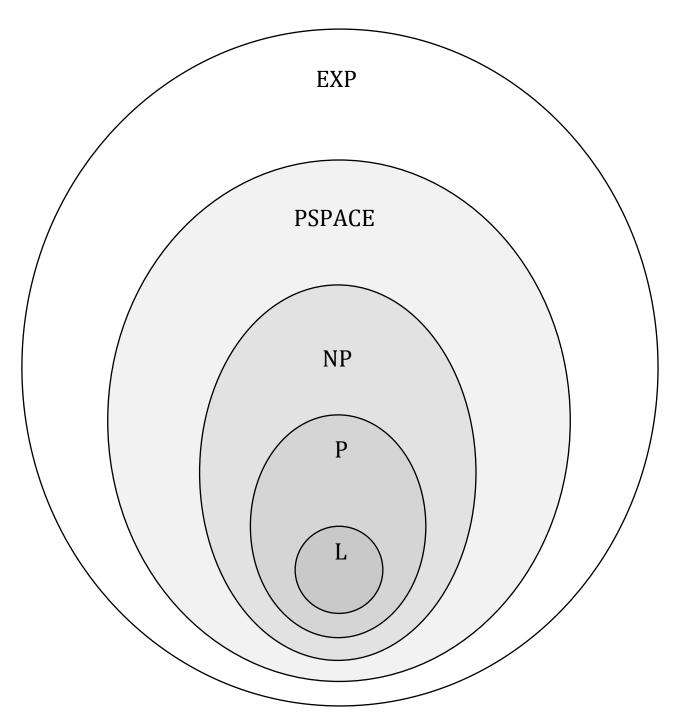
Spring 2025 Instructor: William Hoza

Sublinear-space computation



The complexity class L

 L is the set of languages that can be decided using O(log n) cells of the work tape



Nondeterministic log space computation

- We define NL to be the class of languages that can be decided by a nondeterministic log-space Turing machine
- Equivalently: NL is the class of languages for which membership can be verified in logarithmic space – with the extra requirement that the verifier can only read the certificate one time from left to right

The *s*-*t* connectivity problem

• STCONN = { $\langle G, s, t \rangle$: G is a digraph, s and t are vertices,

and there is a directed path from *s* to *t*}

- Claim: STCONN \in NL
- **Proof sketch:** Take a nondeterministic walk through *G* starting from *s* for |*V*| steps. If we ever reach *t*, accept; otherwise, reject.
- Verifier perspective: Certificate = path from *s* to *t*

Two surprises about NL

• We expect that $P \neq NP$. However, in the space complexity world...

Savitch's Theorem: NL \subseteq SPACE(log² n)

• We expect that NP \neq coNP. However, in the space complexity world...

Immerman-Szelepcsényi Theorem: NL = coNL

Proof of Savitch's theorem

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

- Proof step 1: Show that STCONN \in SPACE(log² n)
- Proof step 2: Show that STCONN is "NL-complete"

Savitch's algorithm

- Claim (Savitch's algorithm): STCONN \in SPACE(log² n)
- **Proof sketch:** Let's figure out: is there a path from s to t of length at most 2^k ?
 - 1. For all $m \in V$:
 - a) Recursively figure out whether there is a path from s to m of length at most 2^{k-1}
 - b) Recursively figure out whether there is a path from m to t of length at most 2^{k-1}
 - c) If both such paths exist, halt and accept
 - 2. Halt and reject
- Space complexity is $O(k \log n)$, which is $O(\log^2 n)$ when $k = \lceil \log |V| \rceil$

Proof of Savitch's theorem

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

- Proof step 1: Show that STCONN \in SPACE $(\log^2 n)$ \checkmark
- Proof step 2: Show that STCONN is "NL-complete"

Log-space reductions

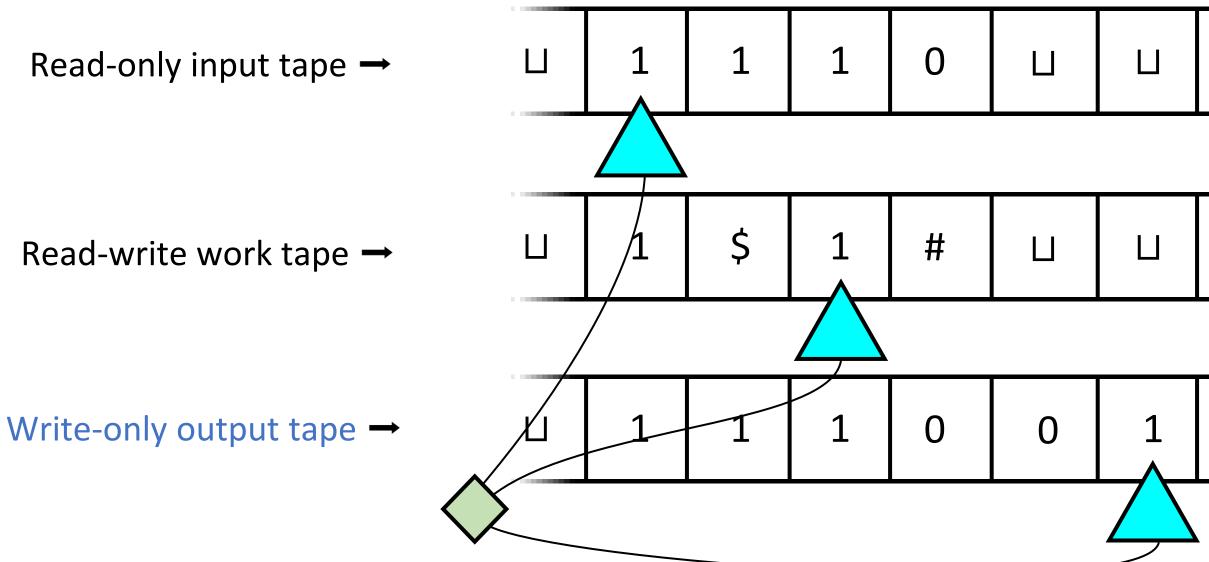
- To prove Savitch's theorem, we will use a new type of reduction
- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- **Definition:** We write $Y_1 \leq_L Y_2$ if there exists $\Psi: \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that
 - For every $w \in Y_1$, we have $\Psi(w) \in Y_2$
 - For every $w \notin Y_1$, we have $\Psi(w) \notin Y_2$
 - Ψ can be computed in $O(\log n)$ space

("YES maps to YES")

("NO maps to NO")

← Definition on next slides

Space-bounded "transducer"



Space complexity for string-valued functions

- Let Ψ : $\{0, 1\}^* \to \{0, 1\}^*$ and let $S: \mathbb{N} \to \mathbb{N}$
- **Def:** We say Ψ is computable in O(S) space if there is a 3-tape TM M such that:
 - If we initialize M with w on tape 1, then it halts with $\Psi(w)$ on tape 3
 - *M* never modifies tape 1 and *M*'s behavior does not depend on what it reads on tape 3
 - The tape 1 head is always located within one cell of the input
 - When the input has length n, the tape 2 head visits O(S(n)) cells

NL-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is NL-complete if $Y \in NL$ and for every

 $Z \in NL$, we have $Z \leq_L Y$

STCONN is NL-complete

Theorem: STCONN is NL-complete

- **Proof:** We have already shown STCONN \in NL
- Now let M be a nondeterministic log-space TM that decides Y
- Reduction: $\Psi(w) = \langle G, s, t \rangle$
- Each vertex in *G* represents a "configuration" of *M* on *w*, namely, the internal state, the contents of the work tape, and the locations of heads

STCONN is NL-complete

- We put an edge from u to v if M can go from u to v in a single step (with w written on input tape)
- We let s = the initial configuration and t = the accepting configuration
- (Without loss of generality, the accepting configuration is unique)
- YES maps to YES 🖌 NO maps to NO 🗸
- Exercise: The reduction can be computed in $O(\log n)$ space \checkmark

Proof of Savitch's theorem

Savitch's Theorem: NL \subseteq SPACE(log² n)

- Proof step 1: Show that STCONN \in SPACE $(\log^2 n)$ \checkmark
- Proof step 2: Show that STCONN is NL-complete \checkmark
- Proof step 3: Show that SPACE(log² n) is closed under log-space mapping reductions

Composing space-bounded algorithms

- Let $f: \{0, 1\}^* \to \{0, 1\}^*$ be a function computable in space $O(S_f)$ where $S_f: \mathbb{N} \to \mathbb{N}$
- Let $g: \{0, 1\}^* \to \{0, 1\}^*$ be a function computable in space $O(S_g)$ where $S_g: \mathbb{N} \to \mathbb{N}$
- Assume S_g is monotone increasing and $S_g(n) \ge \log n$
- Define $\ell(n) = \max_{w \in \{0,1\}^n} |f(w)|$

Lemma: $g \circ f$ is computable in space $O\left(S_f(n) + S_g(\ell(n))\right)$

Composing space-bounded algorithms

Lemma: $g \circ f$ is computable in space $O\left(S_f(n) + S_g(\ell(n))\right)$

- Let M_f , M_g be the TMs that compute f, g. Our job is to simulate M_g on f(w)
- Key challenge: We cannot afford to write f(w) down!
- We remember the location of M_{g} 's input-tape head, *i*, in our work space
- To simulate a single step of M_{g} , first we need to compute $f(w)_{i}$
- To compute it, we simulate M_f on w and discard all but *i*-th output symbol!

Composing space-bounded algorithms

Lemma: $g \circ f$ is computable in space $O\left(S_f(n) + S_g(\ell(n))\right)$

- How much space did we use?
- $S_g(\ell(n))$ space used by simulated M_g
- $S_f(n)$ space used by simulated M_f
- $O(\log(\ell(n)))$ space to keep track of the location of M_g 's input-tape head and M_f 's output-tape head

Closure under reductions

- Corollary: Let $Y_1, Y_2 \subseteq \{0, 1\}^*$. If $Y_1 \leq_L Y_2$ and $Y_2 \in SPACE(\log^2 n)$, then $Y_1 \in SPACE(\log^2 n)$
- **Proof:** The log-space reduction Ψ runs in polynomial time (cf. L \subseteq P)
- Therefore, $|\Psi(w)| \le poly(|w|)$
- By the lemma, $Y_1 \in SPACE(\log n + \log^2(poly(n))) = SPACE(\log^2 n)$

Proof of Savitch's theorem

Savitch's Theorem: NL \subseteq SPACE(log² n)

- Proof step 1: Show that STCONN \in SPACE $(\log^2 n)$ \checkmark
- Proof step 2: Show that STCONN is NL-complete \checkmark
- Proof step 3: Show that SPACE(log² n) is closed under log-space mapping reductions