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Sublinear-space computation

Read-only input tape = L 1

Read-write work tape = LI 1




The complexity class L

* L is the set of languages that can be decided using O(log n) cells of

the work tape



EXP

PSPACE

NP



Nondeterministic log space computation

 We define NL to be the class of languages that can be decided by a

nondeterministic log-space Turing machine

* Equivalently: NL is the class of languages for which membership can
be verified in logarithmic space — with the extra requirement that the

verifier can only read the certificate one time from left to right



The s-t connectivity problem

« STCONN = {(G, s, t) : G is adigraph, s and t are vertices,

and there is a directed path from s to t}

* Claim: STCONN € NL

* Proof sketch: Take a nondeterministic walk through G starting from s

for |V| steps. If we ever reach t, accept; otherwise, reject.

 Verifier perspective: Certificate = path from s tot



Two surprises about NL

* We expect that P # NP. However, in the space complexity world...

Savitch’s Theorem: NL € SPACE(log? n)

* We expect that NP # coNP. However, in the space complexity world...

Immerman-Szelepcsényi Theorem: NL. = coNL




Proof of Savitch’s theorem

Savitch’s Theorem: NL € SPACE(log” n)

* Proof step 1: Show that STCONN € SPACE(log? n)

* Proof step 2: Show that STCONN is “NL-complete”



Savitch’s algorithm

e Claim (Savitch’s algorithm): STCONN € SPACE(log? n)

* Proof sketch: Let’s figure out: is there a path from s to t of length at most 2%?

1. ForallmeV:

a) Recursively figure out whether there is a path from s to m of length at most 2%~1

b) Recursively figure out whether there is a path from m to t of length at most 2% 1
c) If both such paths exist, halt and accept

2. Halt and reject

* Space complexity is O (k logn), which is O(log? n) when k = [log |V|]



Proof of Savitch’s theorem

Savitch’s Theorem: NL € SPACE(log” n)

* Proof step 1: Show that STCONN € SPACE(log?n) «

* Proof step 2: Show that STCONN is “NL-complete”
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Log-space reductions

* To prove Savitch’s theorem, we will use a new type of reduction
e letV,,Y, € {0,1}"

* Definition: We write Y; <, Y, if there exists W:{0,1}* — {0, 1}* such that
* Foreveryw € Y;, we have ¥(w) €Y, (“YES maps to YES”)
* Foreveryw & Y;,we have W(w) € Y, (“NO maps to NO”)

* W can be computed in O(logn) space « Definition on next slides
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Space-bounded “transducer”

Read-only input tape — L] 1 1 L L]

Read-write work tape = L / 1 L L
-

Write-only output tape = /1//1/ 1 0 1




Space complexity for string-valued functions

e Let W:{0,1}* = {0,1}* and let S:N —» N
* Def: We say W is computable in O(S) space if there is a 3-tape TM M such that:

* If we initialize M with w on tape 1, then it halts with W(w) on tape 3

* M never modifies tape 1 and M’s behavior does not depend on what it

reads on tape 3

* The tape 1 head is always located within one cell of the input

* When the input has length n, the tape 2 head visits O(S(n)) cells
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NL-completeness

e letY € {0,1}"

* Definition: We say that Y is NL-complete if Y € NL and for every
Z € NL,wehaveZ <1 Y
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STCONN is NL-complete

Theorem: STCONN is NL-complete

* Proof: We have already shown STCONN € NL
* Now let M be a nondeterministic log-space TM that decides Y
e Reduction: ¥(w) = (G, s, t)

* Each vertex in G represents a “configuration” of M on w, namely, the internal

state, the contents of the work tape, and the locations of heads
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STCONN is NL-complete

 We put an edge from u to v if M can go from u to v in a single step

(with w written on input tape)
* We let s = the initial configuration and t = the accepting configuration
* (Without loss of generality, the accepting configuration is unique)
* YES maps to YES «” NO maps to NO «

* Exercise: The reduction can be computed in O(logn) space
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Proof of Savitch’s theorem

Savitch’s Theorem: NL € SPACE(log” n)

* Proof step 1: Show that STCONN € SPACE(log?n) «
* Proof step 2: Show that STCONN is NL-complete

* Proof step 3: Show that SPACE(log2 n) is closed under log-space

mapping reductions
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Composing space-bounded algorithms

 Let f:{0,1}* — {0, 1}* be a function computable in space O(Sf) where S¢:N - N
* Let g:{0,1}* — {0, 1}* be a function computable in space O(Sg) where S;: N - N

* Assume S, is monotone increasing and Sg(n) > logn

* Define f(n) = Wg{lglic}nlf(w)l

Lemma: g o f is computable in space O (Sf(n) + 5, (f(n)))
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Composing space-bounded algorithms

Lemma: g o f is computable in space O (Sf(n) + S, (f(n)))

* Let M, M, be the TMs that compute f, g. Our job is to simulate M, on f(w)
* Key challenge: We cannot afford to write f(w) down!

* We remember the location of M;’s input-tape head, i, in our work space
* To simulate a single step of M, first we need to compute f(w);

* To compute it, we simulate M¢ on w and discard all but i-th output symbol!
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Composing space-bounded algorithms

Lemma: g o f is computable in space O (Sf(n) + S, (f(n)))

* How much space did we use?
* Sy (f(n)) space used by simulated M,
. Sf(n) space used by simulated My

. 0(log(€(n))) space to keep track of the location of M;’s input-tape head and

M;’s output-tape head
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Closure under reductions

e Corollary: Let Y;,Y, € {0,1}*.IfY; <, Y, and Y, € SPACE(log?n), thenY; €
SPACE(log? n)

* Proof: The log-space reduction W runs in polynomial time (cf. L € P)

* Therefore, |¥(w)| < poly(|w])

» By the lemma, ¥; € SPACE(logn + log?(poly(n))) = SPACE(log? n)
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Proof of Savitch’s theorem

Savitch’s Theorem: NL € SPACE(log” n)

* Proof step 1: Show that STCONN € SPACE(log?n) «
* Proof step 2: Show that STCONN is NL-complete

* Proof step 3: Show that SPACE(log2 n) is closed under log-space

mapping reductions «
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