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How to feel about intractability

 We have encountered several tractable problems in this course

 PALINDROMES, PIT, 2-COLORABLE, ...

* Conventional attitude: This is “good news” (&

* We have also identified many problems that are probably/definitely intractable

« HALT, BOUNDED-HALT, 3-SAT, CLIQUE, ...
 Conventional attitude: This is “bad news” =

-~

* Twist: Sometimes we are hoping that certain problems are intractable! (&



Cryptography



Sec ure commauaun IcatIO N . Public communication channel .

* How can Bob send a private 2:3:: E
ve
message to Alice?
e E.g., credit card number
* |t seems impossible, because
Alice and Eve receive all the

Alice

same information from Bob!

* A clever approach: Try to force Eve to solve an intractable problem



Public-key encryption

Alice Bob
52ED879E Key generation L'f:; | 3| Encrypt «@%
70F71D92 function + Alice's
Big random public key
number SELEET
0SEO03CE4
Alice
Alice's Alice's  J A/h
public key private key Hello — Decrypt
Alicel Alice's
private key

 Alice’s advantage over Eve: Alice knows the private key and Eve doesn’t



“encrypt”

Public-key encryption scheme ey “decrypt

N/

* Definition: A simplified public-key encryption scheme is a triple (K, E, D),
where:
« K€ {0,1}* x{0,1} and E,D:{0,1}* x {0,1}* = {0,1}"
* Foreveryw € {0,1}" and every (kpub, kpriv) € K, we have D (kpriv, E(kpub, W)) = w
 F and D can be computed in polynomial time

* For every (kpub, kpriv) € K, we have |kpub| = |kpriv|



If Eve is computationally unbounded

* Let’s show that if Eve has unlimited computational power, then encryption is

futile

* Claim: There exists a function Dgye:{0,1}" X {0,1}" — {0, 1}* such that for

every message w € {0, 1}" and every pair (kpub, kpriv) € K, we have

Dgye (kpub: E(kpub' W)) = W

* Proof: If E(kpub,w) = E(kpub,w’) =y, thenw = D(kpriv, y) =w'



What if Eve is computationally bounded?

* Amazing fact: There are known public-key encryption schemes such

that decrypting without the private key seems to be intractable!

e (*Better: There are schemes such that it is apparently intractable to “occasionally” “partially”

decrypt without the private key. Making this precise is beyond the scope of our course)

* Example: “RSA”

* These amazing encryption schemes make our modern internet

experience possible! Can we prove that they are secure?



Cryptography and P vs. NP

 Let (K, E, D) be a simplified public-key encryption scheme

* There is a function Dgye such that Dgy, (kpub, E(kpub, W)) =w

Theorem: If P = NP, then Dg,,. can be computed in polynomial time =




Cryptography and P vs. NP

Theorem: If P = NP, then Dg,,. can be computed in polynomial time =

* Proof: Let Y = {(kpub, Y, W) : there exists z such that E (kpub, Wz) = y}
* Y € NP: Guess z. (Since D is poly-time-computable, z is poly-size)
* We are assuming P = NP, so thereforeY € P

* Therefore, Eve can construct the message bit-by-bit in polynomial time
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Cryptography and P vs. NP

* Disclaimer: The preceding discussion of public-key encryption is simplified

* For example, a real encryption scheme should explain how to generate keys

* Nevertheless, the main message is accurate:

* If P = NP, then secure public-key encryption is impossible!
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Cryptography and P vs. NP

* In fact, virtually all of theoretical cryptography relies on assumptions that are

stronger than the assumption P = NP

* Maybe this makes you feel concerned about the uncertain foundations of

computer security... G

* Or, maybe this makes you feel more confident that P #= NP, considering how

much effort people expend trying to break cryptosystems (&
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Complexity theory:

The study of computational resources



Computational resources: Fuel for algorithms
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Sublinear-space computation

* Can we solve any interesting problems using o(n) space?

* The one-tape Turing machine is the not the right model of

computation for studying sublinear-space algorithms
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Sublinear-space computation

Read-only input tape = L 1

Read-write work tape = LI 1
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The complexity class SPACE(S)

*letY €{0,1}" andlet S: N — N be a function (space bound)

 Definition: Y € SPACE(S) if there is a two-tape Turing machine M such that:

e M decides Y
* M never modifies the symbols written on tape 1

* The tape 1 head is always located within one cell of the input

* When the input has length n, the tape 2 head visits O(S(n)) cells

18



The complexity class L

* Exercise: PSPACE = U, SPACE(nk)
* Definition: L = SPACE(logn)

* L is the set of languages that can be decided in logarithmic space
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BALANCED € L

 BALANCED = {x € {0,1}" : x has equal numbers of zeroes and ones}
* Claim: BALANCED € L

* Proof sketch: Given x € {0, 1}":

e Count the number of ones in x
These counters are only log nn bits each!
e Count the number of zeroes in x

* Check whether the two counts are equal
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LESP

e Exercise: Show that L € P

* (Similar to the proof that PSPACE € EXP)
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EXP

PSPACE

NP
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The L vs. P problem

 We expect that L # P, but we don’t know how to prove it

. = P would mean that every efficient algorithm can be modified so

that it only uses a tiny amount of work space

23



LLvs. Pvs. NP vs. PSPACE

L€ P < NP <€ PSPACE
* What we expect: All of these containments are strict

* What we can prove: At least one of these containments is strict:

Theorem: L. # PSPACE
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Nondeterministic log space computation

 We define NL to be the class of languages that can be decided by a

nondeterministic log-space Turing machine

* Equivalently: NL is the class of languages for which membership can
be verified in logarithmic space — with the extra requirement that the

verifier can only read the certificate one time from left to right
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