CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

How to feel about intractability

- We have encountered several tractable problems in this course
 - PALINDROMES, PIT, 2-COLORABLE, ...
 - Conventional attitude: This is "good news"
- We have also identified many problems that are probably/definitely intractable
 - HALT, BOUNDED-HALT, 3-SAT, CLIQUE, ...
 - Conventional attitude: This is "bad news" 😟
- Twist: Sometimes we are hoping that certain problems are intractable!

Cryptography

Secure communication

- How can Bob send a private message to Alice?
 - E.g., credit card number
- It seems impossible, because

Alice and Eve receive all the

same information from Bob!

• A clever approach: Try to force Eve to solve an intractable problem

Public-key encryption

• Alice's advantage over Eve: Alice knows the private key and Eve doesn't

Public-key encryption scheme

- **Definition:** A simplified public-key encryption scheme is a triple (*K*, *E*, *D*), where:
 - $K \subseteq \{0,1\}^* \times \{0,1\}^*$ and $E, D: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$
 - For every $w \in \{0, 1\}^*$ and every $(k_{\text{pub}}, k_{\text{priv}}) \in K$, we have $D(k_{\text{priv}}, E(k_{\text{pub}}, w)) = w$
 - *E* and *D* can be computed in polynomial time
 - For every $(k_{\text{pub}}, k_{\text{priv}}) \in K$, we have $|k_{\text{pub}}| = |k_{\text{priv}}|$

"encrypt"

"decrypt"

"keys"

If Eve is computationally unbounded

- Let's show that if Eve has unlimited computational power, then encryption is futile
- Claim: There exists a function D_{Eve} : $\{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for every message $w \in \{0, 1\}^*$ and every pair $(k_{pub}, k_{priv}) \in K$, we have

$$D_{\rm Eve}\left(k_{\rm pub}, E(k_{\rm pub}, w)\right) = w$$

• **Proof:** If $E(k_{pub}, w) = E(k_{pub}, w') = y$, then $w = D(k_{priv}, y) = w'$

What if Eve is computationally bounded?

- Amazing fact: There are known public-key encryption schemes such that decrypting without the private key seems to be intractable!
 - (*Better: There are schemes such that it is apparently intractable to "occasionally" "partially" decrypt without the private key. Making this precise is beyond the scope of our course)
- Example: "RSA"
- These amazing encryption schemes make our modern internet experience possible! Can we prove that they are secure?

Cryptography and P vs. NP

- Let (*K*, *E*, *D*) be a simplified public-key encryption scheme
- There is a function D_{Eve} such that $D_{\text{Eve}}\left(k_{\text{pub}}, E(k_{\text{pub}}, w)\right) = w$

Theorem: If P = NP, then D_{Eve} can be computed in polynomial time \bigotimes

Cryptography and P vs. NP

Theorem: If P = NP, then D_{Eve} can be computed in polynomial time \bigotimes

- **Proof:** Let $Y = \{ \langle k_{pub}, y, w \rangle : \text{there exists } z \text{ such that } E(k_{pub}, wz) = y \}$
- $Y \in NP$: Guess z. (Since D is poly-time-computable, z is poly-size)
- We are assuming P = NP, so therefore $Y \in P$
- Therefore, Eve can construct the message bit-by-bit in polynomial time

Cryptography and P vs. NP $% \left({{{\mathbf{NP}}} \right) = {{\mathbf{NP}}} \right)$

- Disclaimer: The preceding discussion of public-key encryption is simplified
 - For example, a real encryption scheme should explain how to generate keys
- Nevertheless, the main message is accurate:
- If P = NP, then secure public-key encryption is impossible!

Cryptography and P vs. NP

- In fact, virtually all of theoretical cryptography relies on assumptions that are stronger than the assumption $P \neq NP$
- Maybe this makes you feel concerned about the uncertain foundations of computer security...
- Or, maybe this makes you feel more confident that $P \neq NP$, considering how much effort people expend trying to break cryptosystems 2

can be solved

through ecomputation?

Complexity theory:

The study of computational resources

Computational resources: Fuel for algorithms

Sublinear-space computation

- Can we solve any interesting problems using o(n) space?
- The one-tape Turing machine is the not the right model of computation for studying sublinear-space algorithms

Sublinear-space computation

The complexity class SPACE(S)

- Let $Y \subseteq \{0, 1\}^*$ and let $S: \mathbb{N} \to \mathbb{N}$ be a function (space bound)
- **Definition:** $Y \in SPACE(S)$ if there is a two-tape Turing machine M such that:
 - *M* decides *Y*
 - *M* never modifies the symbols written on tape 1
 - The tape 1 head is always located within one cell of the input
 - When the input has length n, the tape 2 head visits O(S(n)) cells

The complexity class L

- Exercise: $PSPACE = U_k SPACE(n^k)$
- **Definition:** $L = SPACE(\log n)$
- L is the set of languages that can be decided in logarithmic space

$\mathsf{BALANCED} \in \mathsf{L}$

- BALANCED = { $x \in \{0, 1\}^* : x$ has equal numbers of zeroes and ones}
- Claim: BALANCED \in L
- **Proof sketch:** Given $x \in \{0, 1\}^n$:
 - Count the number of ones in *x*
 - Count the number of zeroes in *x*
 - Check whether the two counts are equal

These counters are only $\log n$ bits each!

$L \subseteq P$

- Exercise: Show that $L \subseteq P$
- (Similar to the proof that PSPACE \subseteq EXP)

The L vs. P problem

- We expect that $L \neq P$, but we don't know how to prove it
- L = P would mean that every efficient algorithm can be modified so that it only uses a tiny amount of work space

L vs. P vs. NP vs. PSPACE

- $L \subseteq P \subseteq NP \subseteq PSPACE$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict:

Theorem: $L \neq PSPACE$

Nondeterministic log space computation

- We define NL to be the class of languages that can be decided by a nondeterministic log-space Turing machine
- Equivalently: NL is the class of languages for which membership can be verified in logarithmic space – with the extra requirement that the verifier can only read the certificate one time from left to right