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How to feel about intractability

• We have encountered several tractable problems in this course

• PALINDROMES, PIT, 2-COLORABLE, …

• Conventional attitude: This is “good news” 

• We have also identified many problems that are probably/definitely intractable

• HALT, BOUNDED-HALT, 3-SAT, CLIQUE, …

• Conventional attitude: This is “bad news” 

• Twist: Sometimes we are hoping that certain problems are intractable! 

2



Cryptography
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Secure communication
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Alice Bob

Online
store

Customer

Public communication channel

Eve
• How can Bob send a private

message to Alice? 

• E.g., credit card number

• It seems impossible, because

Alice and Eve receive all the

same information from Bob!

• A clever approach: Try to force Eve to solve an intractable problem



Public-key encryption

• Alice’s advantage over Eve: Alice knows the private key and Eve doesn’t
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Public-key encryption scheme

• Definition: A simplified public-key encryption scheme is a triple (𝐾, 𝐸, 𝐷), 

where:

• 𝐾 ⊆ {0, 1}∗ × {0, 1}∗ and 𝐸, 𝐷: {0, 1}∗ × {0, 1}∗ → {0, 1}∗

• For every 𝑤 ∈ {0, 1}∗ and every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝐷 𝑘priv, 𝐸 𝑘pub, 𝑤 = 𝑤

• 𝐸 and 𝐷 can be computed in polynomial time

• For every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝑘pub = 𝑘priv
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If Eve is computationally unbounded

• Let’s show that if Eve has unlimited computational power, then encryption is 

futile

• Claim: There exists a function 𝐷Eve: {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for 

every message 𝑤 ∈ {0, 1}∗ and every pair 𝑘pub, 𝑘priv ∈ 𝐾, we have

𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Proof: If 𝐸 𝑘pub, 𝑤 = 𝐸 𝑘pub, 𝑤′ = 𝑦, then 𝑤 = 𝐷 𝑘priv, 𝑦 = 𝑤′ 
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What if Eve is computationally bounded?

• Amazing fact: There are known public-key encryption schemes such 

that decrypting without the private key seems to be intractable! 

• (*Better: There are schemes such that it is apparently intractable to “occasionally” “partially” 

decrypt without the private key. Making this precise is beyond the scope of our course)

• Example: “RSA”

• These amazing encryption schemes make our modern internet 

experience possible! Can we prove that they are secure?
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Cryptography and P vs. NP

• Let 𝐾, 𝐸, 𝐷  be a simplified public-key encryption scheme

• There is a function 𝐷Eve such that 𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤
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Theorem: If P = NP, then 𝐷Eve can be computed in polynomial time 



Cryptography and P vs. NP

• Proof: Let 𝑌 = 𝑘pub, 𝑦, 𝑤 ∶ there exists 𝑧 such that 𝐸 𝑘pub, 𝑤𝑧 = 𝑦

• 𝑌 ∈ NP: Guess 𝑧. (Since 𝐷 is poly-time-computable, 𝑧 is poly-size)

• We are assuming P = NP, so therefore 𝑌 ∈ P

• Therefore, Eve can construct the message bit-by-bit in polynomial time
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Theorem: If P = NP, then 𝐷Eve can be computed in polynomial time 



Cryptography and P vs. NP

• Disclaimer: The preceding discussion of public-key encryption is simplified

• For example, a real encryption scheme should explain how to generate keys

• Nevertheless, the main message is accurate:

• If P = NP, then secure public-key encryption is impossible!
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Cryptography and P vs. NP

• In fact, virtually all of theoretical cryptography relies on assumptions that are 

stronger than the assumption P ≠ NP

• Maybe this makes you feel concerned about the uncertain foundations of 

computer security… 

• Or, maybe this makes you feel more confident that P ≠ NP, considering how 

much effort people expend trying to break cryptosystems 
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Which problems

can be solved

through computation?
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Complexity theory:

The study of computational resources
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Computational resources: Fuel for algorithms
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Sublinear-space computation

• Can we solve any interesting problems using 𝑜 𝑛  space?

• The one-tape Turing machine is the not the right model of 

computation for studying sublinear-space algorithms
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Sublinear-space computation
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The complexity class SPACE 𝑆

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝑆: ℕ → ℕ be a function (space bound)

• Definition: 𝑌 ∈ SPACE 𝑆  if there is a two-tape Turing machine 𝑀 such that:

• 𝑀 decides 𝑌

• 𝑀 never modifies the symbols written on tape 1

• The tape 1 head is always located within one cell of the input

• When the input has length 𝑛, the tape 2 head visits 𝑂 𝑆 𝑛  cells
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The complexity class L

• Exercise: PSPACE = 𝑘ڂ SPACE 𝑛𝑘

• Definition: L = SPACE log 𝑛

• L is the set of languages that can be decided in logarithmic space
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BALANCED ∈ L 

• BALANCED = 𝑥 ∈ {0, 1}∗ ∶ 𝑥 has equal numbers of zeroes and ones

• Claim: BALANCED ∈ L

• Proof sketch: Given 𝑥 ∈ {0, 1}𝑛:

• Count the number of ones in 𝑥

• Count the number of zeroes in 𝑥

• Check whether the two counts are equal
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These counters are only log 𝑛 bits each!



L ⊆ P 

• Exercise: Show that L ⊆ P

• (Similar to the proof that PSPACE ⊆ EXP)

21



22

L

NP

PSPACE

EXP

P



The L vs. P problem

• We expect that L ≠ P, but we don’t know how to prove it

• L = P would mean that every efficient algorithm can be modified so 

that it only uses a tiny amount of work space
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L vs. P vs. NP vs. PSPACE

• L ⊆ P ⊆ NP ⊆ PSPACE

• What we expect: All of these containments are strict

• What we can prove: At least one of these containments is strict:
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Theorem: L ≠ PSPACE



Nondeterministic log space computation

• We define NL to be the class of languages that can be decided by a 

nondeterministic log-space Turing machine

• Equivalently: NL is the class of languages for which membership can 

be verified in logarithmic space – with the extra requirement that the 

verifier can only read the certificate one time from left to right
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