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Coping with intractability
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The knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵

• Interpretation: There are 𝑘 items

• Item 𝑖 has weight 𝑤𝑖  (in pounds) and value 𝑣𝑖 (in dollars)

• We can carry up to 𝐵 pounds of stuff in our knapsack

• Goal: Find a set 𝑆 ⊆ {1, 2, … , 𝑘} such that σ𝑖∈𝑆 𝑣𝑖 is as large as 

possible, subject to the constraint σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵
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KNAPSACK is NP-complete

• KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘} 

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}
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Theorem: KNAPSACK is NP-complete



Knapsack in pseudo-polynomial time

• UNARY-VAL-KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝐵, 1𝑉 ∶ there 

     exists 𝑆 ⊆ {1, 2, … , 𝑘} such that

     Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}
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Theorem: UNARY-VAL-KNAPSACK ∈ P



Approximation algorithms

• Next approach for coping with intractability: approximation algorithms
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Approximation algorithm for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max 

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and 

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵
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Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that 

given 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such 

that σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT



Approximation algorithm for Knapsack

• Algorithm: Let 𝑣𝑖
′ = 𝛼𝑣𝑖 , where 𝛼 =

𝑘

𝜖⋅max 𝑣1,…,𝑣𝑘
, so 𝑣𝑖

′ ≤ 𝑘/𝜖

• Output 𝑆 ⊆ 1, … , 𝑘  that maximizes σ𝑖∈𝑆 𝑣𝑖
′ subject to σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• Polynomial time, because we can encode 𝑣𝑖
′ in unary

• Correctness proof: Let 𝑆′ ⊆ 1, … , 𝑘  be optimal. Then



𝑖∈𝑆

𝑣𝑖 ≥
1

𝛼


𝑖∈𝑆

𝑣𝑖
′ ≥

1

𝛼


𝑖∈𝑆′

𝑣𝑖
′ >

1

𝛼


𝑖∈𝑆′

𝛼𝑣𝑖 − 1 ≥ 

𝑖∈𝑆′

𝑣𝑖 −
𝑘

𝛼
= OPT − 𝜖 ⋅ max 𝑣1, … , 𝑣𝑘

≥ 1 − 𝜖 ⋅ OPT
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Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out 

of NP-completeness

• However:

• Approximation is not always applicable

• E.g., UNDIRECTED-HAM-CYCLE is simply not an optimization problem

• Even if it’s applicable, approximation is not always feasible!
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Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺  denote the size of the largest clique in 𝐺

• (Proof omitted. Not on exercises / exams)
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Theorem: Let 𝜖 > 0. Suppose there exists a poly-time algorithm such 

that given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉 

satisfying 𝑆 ≥ 𝜖 ⋅ 𝜔 𝐺 . Then P = NP.



Final exam

• Final exam will be Wednesday, May 28 from 3pm to 5pm in STU 105

• The exam is cumulative

• To prepare for the exam, you only need to study the material prior to 

this point (including exercises 25-28)
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Structured inputs

• Let’s discuss another approach for coping with 𝑌 ∉ P

• Idea: Try to identify some additional structure in the instances you 

care about, beyond the definition of 𝑌

• Example: Initially, you think you need to solve SAT

SAT = 𝜙 ∶ 𝜙 is a satisfiable CNF formula

• SAT is NP-complete 
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Structured inputs

• However, after studying your situation more closely, you realize that your 

instances are all “Horn formulas”

• A Horn formula is a CNF formula with at most one positive literal per clause

• HORN-SAT = 𝜙 ∶ 𝜙 is a satisfiable Horn formula

• Exercise: Prove that HORN-SAT ∈ P
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SAT solvers

• Another approach: If your problem is in NP, you can try using a “SAT 

solver” (practical software for solving SAT)

• For example, many software package managers use SAT solvers to resolve 

dependencies

• Presumably, the reason this works is that there is some hidden structure 

in the SAT instances that come up in practice (think Horn formulas)
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SAT solvers are not a panacea

• Note: Despite the practical success of SAT solvers, it is nevertheless 

conjectured that P ≠ NP

• There are “hard instances” on which practical SAT solvers fail badly 

• E.g., good luck using SAT solvers to mine bitcoin…
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Quantum computing

• Another approach for coping with intractability: Quantum Computing

• A quantum computer is a computational device that uses special 

features of quantum physics

• A detailed discussion of quantum computing is outside the scope of 

this course

• We will discuss only some key facts about quantum computing
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Quantum computing

• Quantum computers are, to some extent, hypothetical

• So far, researchers have constructed rudimentary quantum computers

• There are huge ongoing efforts to build fully-functional quantum 

computers
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Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that 

could be decided in polynomial time by a fully-functional quantum 

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE
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Shor’s algorithm

• Recall FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!
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Theorem (Shor’s algorithm): FACTOR ∈ BQP



Quantum computing is not a panacea

• Recall: FACTOR is probably not NP-complete

• In fact, it is conjectured that NP ⊈ BQP

• In this case, even a fully-functional quantum computer would not be able 

to solve NP-complete problems in polynomial time

• Even quantum computers have limitations
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Limitations of quantum computers

• We have developed several techniques for identifying hardness

• Undecidability

• EXP-completeness

• NP-completeness

• Those techniques are all still applicable even in a world with fully-

functional quantum computers!

• Complexity theory is intended to be “future-proof” / “timeless”
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Which problems

can be solved

through computation?
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