
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Coping with intractability

2

The knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵

• Interpretation: There are 𝑘 items

• Item 𝑖 has weight 𝑤𝑖 (in pounds) and value 𝑣𝑖 (in dollars)

• We can carry up to 𝐵 pounds of stuff in our knapsack

• Goal: Find a set 𝑆 ⊆ {1, 2, … , 𝑘} such that σ𝑖∈𝑆 𝑣𝑖 is as large as

possible, subject to the constraint σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

3

KNAPSACK is NP-complete

• KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘}

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

4

Theorem: KNAPSACK is NP-complete

Knapsack in pseudo-polynomial time

• UNARY-VAL-KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝐵, 1𝑉 ∶ there

 exists 𝑆 ⊆ {1, 2, … , 𝑘} such that

 Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

5

Theorem: UNARY-VAL-KNAPSACK ∈ P

Approximation algorithms

• Next approach for coping with intractability: approximation algorithms

6

Approximation algorithm for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵

7

Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that

given 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such

that σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT

Approximation algorithm for Knapsack

• Algorithm: Let 𝑣𝑖
′ = 𝛼𝑣𝑖 , where 𝛼 =

𝑘

𝜖⋅max 𝑣1,…,𝑣𝑘
, so 𝑣𝑖

′ ≤ 𝑘/𝜖

• Output 𝑆 ⊆ 1, … , 𝑘 that maximizes σ𝑖∈𝑆 𝑣𝑖
′ subject to σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

• Polynomial time, because we can encode 𝑣𝑖
′ in unary

• Correctness proof: Let 𝑆′ ⊆ 1, … , 𝑘 be optimal. Then

𝑖∈𝑆

𝑣𝑖 ≥
1

𝛼

𝑖∈𝑆

𝑣𝑖
′ ≥

1

𝛼

𝑖∈𝑆′

𝑣𝑖
′ >

1

𝛼

𝑖∈𝑆′

𝛼𝑣𝑖 − 1 ≥

𝑖∈𝑆′

𝑣𝑖 −
𝑘

𝛼
= OPT − 𝜖 ⋅ max 𝑣1, … , 𝑣𝑘

≥ 1 − 𝜖 ⋅ OPT
8

Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out

of NP-completeness

• However:

• Approximation is not always applicable

• E.g., UNDIRECTED-HAM-CYCLE is simply not an optimization problem

• Even if it’s applicable, approximation is not always feasible!

9

Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺 denote the size of the largest clique in 𝐺

• (Proof omitted. Not on exercises / exams)

10

Theorem: Let 𝜖 > 0. Suppose there exists a poly-time algorithm such

that given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉

satisfying 𝑆 ≥ 𝜖 ⋅ 𝜔 𝐺 . Then P = NP.

Final exam

• Final exam will be Wednesday, May 28 from 3pm to 5pm in STU 105

• The exam is cumulative

• To prepare for the exam, you only need to study the material prior to

this point (including exercises 25-28)

11

Structured inputs

• Let’s discuss another approach for coping with 𝑌 ∉ P

• Idea: Try to identify some additional structure in the instances you

care about, beyond the definition of 𝑌

• Example: Initially, you think you need to solve SAT

SAT = 𝜙 ∶ 𝜙 is a satisfiable CNF formula

• SAT is NP-complete

12

Structured inputs

• However, after studying your situation more closely, you realize that your

instances are all “Horn formulas”

• A Horn formula is a CNF formula with at most one positive literal per clause

• HORN-SAT = 𝜙 ∶ 𝜙 is a satisfiable Horn formula

• Exercise: Prove that HORN-SAT ∈ P

13

SAT solvers

• Another approach: If your problem is in NP, you can try using a “SAT

solver” (practical software for solving SAT)

• For example, many software package managers use SAT solvers to resolve

dependencies

• Presumably, the reason this works is that there is some hidden structure

in the SAT instances that come up in practice (think Horn formulas)

14

SAT solvers are not a panacea

• Note: Despite the practical success of SAT solvers, it is nevertheless

conjectured that P ≠ NP

• There are “hard instances” on which practical SAT solvers fail badly

• E.g., good luck using SAT solvers to mine bitcoin…

15

Quantum computing

• Another approach for coping with intractability: Quantum Computing

• A quantum computer is a computational device that uses special

features of quantum physics

• A detailed discussion of quantum computing is outside the scope of

this course

• We will discuss only some key facts about quantum computing

16

Quantum computing

• Quantum computers are, to some extent, hypothetical

• So far, researchers have constructed rudimentary quantum computers

• There are huge ongoing efforts to build fully-functional quantum

computers

17

Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that

could be decided in polynomial time by a fully-functional quantum

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE

18

Shor’s algorithm

• Recall FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!

19

Theorem (Shor’s algorithm): FACTOR ∈ BQP

Quantum computing is not a panacea

• Recall: FACTOR is probably not NP-complete

• In fact, it is conjectured that NP ⊈ BQP

• In this case, even a fully-functional quantum computer would not be able

to solve NP-complete problems in polynomial time

• Even quantum computers have limitations

20

21

P

NP

NP-complete

NP-hard

3-SAT

FACTOR BQP

PSPACE

Limitations of quantum computers

• We have developed several techniques for identifying hardness

• Undecidability

• EXP-completeness

• NP-completeness

• Those techniques are all still applicable even in a world with fully-

functional quantum computers!

• Complexity theory is intended to be “future-proof” / “timeless”

22

Which problems

can be solved

through computation?

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Coping with intractability
	Slide 3: The knapsack problem
	Slide 4: KNAPSACK is NP-complete
	Slide 5: Knapsack in pseudo-polynomial time
	Slide 6: Approximation algorithms
	Slide 7: Approximation algorithm for Knapsack
	Slide 8: Approximation algorithm for Knapsack
	Slide 9: Approximation algorithms are not a panacea
	Slide 10: Inapproximability of the clique problem
	Slide 11: Final exam
	Slide 12: Structured inputs
	Slide 13: Structured inputs
	Slide 14: SAT solvers
	Slide 15: SAT solvers are not a panacea
	Slide 16: Quantum computing
	Slide 17: Quantum computing
	Slide 18: Quantum complexity theory
	Slide 19: Shor’s algorithm
	Slide 20: Quantum computing is not a panacea
	Slide 21
	Slide 22: Limitations of quantum computers
	Slide 23: Which problems can be solved through computation?

