CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Coping with intractability

The knapsack problem

* Given: Positive integers wyq, ..., Wy, V4, ..., Uy, B

* Interpretation: There are k items

* Iltem i has weight w; (in pounds) and value v; (in dollars)

* We can carry up to B pounds of stuff in our knapsack

* Goal: Findaset S € {1, 2, ..., k} such that), v; is as large as

possible, subject to the constraint };;ccw; < B

KNAPSACK is NP-complete

 KNAPSACK = {{wy, ..., Wy, vy, ..., U, B, V) : there exists § € {1, 2, ..., k}

such thatX;cow; < Band X5 v; =V}

Theorem: KNAPSACK is NP-complete

Knapsack in pseudo-polynomial time

« UNARY-VAL-KNAPSACK = {{wq, ..., Wy, 171, ..., 1Yk, B, 1") : there
exists S € {1, 2, ..., k} such that

YiesW; < Band X v; =V}

Theorem: UNARY-VAL-KNAPSACK € P

Approximation algorithms

* Next approach for coping with intractability: approximation algorithms

Approximation algorithm for Knapsack

* For every wy, ..., Wy, V4, ..., Vg, B, define

OPT = max{z v; : S C{1,.. k}and Ewi < B}

LES LES

Theorem: For every € > 0, there exists a poly-time algorithm such that
given wy, ..., Wy, V4, ..., U, B, the algorithm outputs S € {1, ..., k} such

that };cow; < Band X;cov; = (1 —€) - OPT

Approximation algorithm for Knapsack

k
e-max(vq,..,Vk)

* Algorithm: Let v; = |av;], where a = ,S0 U < k/e

* Output S € {1, ..., k} that maximizes }};cc v; subjectto }\;ccw; < B
* Polynomial time, because we can encode v; in unary

 Correctness proof: Let S’ € {1, ..., k} be optimal. Then

1 1 1 k
ZUi ZEZV{ Zaz v; >EZ(avi—1) > ZUi - = OPT — € - max(vq, ..., Uy)

IES IES ies’ ies’ ies’

> (1—¢€)-0PT

Approximation algorithms are not a panacea

* In some cases, approximation algorithms take some of the sting out

of NP-completeness

* However:

* Approximation is not always applicable

 E.g., UNDIRECTED-HAM-CYCLE is simply not an optimization problem

e Even if it’s applicable, approximation is not always feasible!

Inapproximability of the clique problem

* For a graph G, let w(G) denote the size of the largest clique in G

Theorem: Let € > 0. Suppose there exists a poly-time algorithm such
that given a graph G = (V, E), the algorithm outputs a clique S € V
satisfying |S| = € - w(G). Then P = NP.

* (Proof omitted. Not on exercises / exams)

10

Final exam

* Final exam will be Wednesday, May 28 from 3pm to 5pm in STU 105
* The exam is cumulative

* To prepare for the exam, you only need to study the material prior to

this point (including exercises 25-28)

11

Structured inputs

* Let’s discuss another approach for coping withY & P

 |dea: Try to identify some additional structure in the instances you

care about, beyond the definition of Y

* Example: Initially, you think you need to solve SAT

SAT = {{(¢) : ¢ is a satisfiable CNF formula}

* SAT is NP-complete (=

12

Structured inputs

* However, after studying your situation more closely, you realize that your

instances are all “Horn formulas”
* AHorn formula is a CNF formula with at most one positive literal per clause
 HORN-SAT = {{¢) : ¢ is a satisfiable Horn formula}

e Exercise: Prove that HORN-SAT € P

13

SAT solvers

* Another approach: If your problem is in NP, you can try using a “SAT

solver” (practical software for solving SAT)

* For example, many software package managers use SAT solvers to resolve

dependencies

* Presumably, the reason this works is that there is some hidden structure

in the SAT instances that come up in practice (think Horn formulas)

14

SAT solvers are not a panacea

* Note: Despite the practical success of SAT solvers, it is nevertheless

conjectured that P #= NP
* There are “hard instances” on which practical SAT solvers fail badly

* E.g., good luck using SAT solvers to mine bitcoin...

15

Quantum computing

* Another approach for coping with intractability: Quantum Computing

* A quantum computer is a computational device that uses special

features of quantum physics

* A detailed discussion of quantum computing is outside the scope of

this course

* We will discuss only some key facts about quantum computing

16

Quantum computing

* Quantum computers are, to some extent, hypothetical
 So far, researchers have constructed rudimentary qguantum computers

* There are huge ongoing efforts to build fully-functional quantum

computers

17

Quantum complexity theory

* One can define a complexity class, BQP, consisting of all languages that
could be decided in polynomial time by a fully-functional quantum

computer

* The mathematical definition of BQP is beyond the scope of this course

* One can prove that BPP € BQP € PSPACE

18

Shor’s algorithm

* Recall FACTOR = {(N, K) : N has a prime factor p < K}

* Conjecture: FACTOR ¢ P

Theorem (Shor’s algorithm): FACTOR € BQP

* FACTOR is a likely counterexample to the extended Church-Turing thesis!

19

Quantum computing is not a panacea

e Recall: FACTOR is probably not NP-complete
* In fact, it is conjectured that NP € BQP

* In this case, even a fully-functional guantum computer would not be able

to solve NP-complete problems in polynomial time

* Even quantum computers have limitations

20

3-SAT

FACTOR

NP-hard

X PSPACE
NP-complete

NP

BQP

—

w

v

21

Limitations of quantum computers

* We have developed several techniques for identifying hardness

* Undecidability
 EXP-completeness

* NP-completeness

* Those techniques are all still applicable even in a world with fully-

functional quantum computers!

* Complexity theory is intended to be “future-proof” / “timeless”

22

Which problems
can be solved

through/gomputation?
TSR

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Coping with intractability
	Slide 3: The knapsack problem
	Slide 4: KNAPSACK is NP-complete
	Slide 5: Knapsack in pseudo-polynomial time
	Slide 6: Approximation algorithms
	Slide 7: Approximation algorithm for Knapsack
	Slide 8: Approximation algorithm for Knapsack
	Slide 9: Approximation algorithms are not a panacea
	Slide 10: Inapproximability of the clique problem
	Slide 11: Final exam
	Slide 12: Structured inputs
	Slide 13: Structured inputs
	Slide 14: SAT solvers
	Slide 15: SAT solvers are not a panacea
	Slide 16: Quantum computing
	Slide 17: Quantum computing
	Slide 18: Quantum complexity theory
	Slide 19: Shor’s algorithm
	Slide 20: Quantum computing is not a panacea
	Slide 21
	Slide 22: Limitations of quantum computers
	Slide 23: Which problems can be solved through computation?

