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The complexity class coNP

e letY € {0,1}"

* Definition: Y € coNP if there exists a randomized polynomial-time
Turing machine M such that for every w € {0, 1}":

* Ifw €Y, then Pr[M rejects w] = 0

e Ifw ¢ Y, then Pr[M rejects w] # 0



FACTOR € coNP

* FACTOR = {(K, R) : K has a prime factor p such that p < R}
* Claim: FACTOR € coNP

* Proof: Given (K, R):
* Nondeterministically guess numbers d < log K and p,p,, ..., 04 < K

* If pq, ..., pq are prime, py - P, - P3 - Pg = K, and min(py, ..., p4) > R, reject

°0
e Otherwise, accept Q



The complexity class NP N coNP

 We have shown that FACTOR € NP and FACTOR € coNP
e FACTOR € NP N coNP

* Y € NP N coNP means that for every instance, there is a certificate

* A certificate of membership for YES instances

* A certificate of non-membership for NO instances



The NP vs. coNP problem

Conjecture: NP # coNP

 “NP = coNP” would mean that for every unsatisfiable circuit, there is
some short certificate | could present to prove to you that a circuit is

unsatisfiable

* That sounds counterintuitive! But we don’t really know



PSPACE

w

FACTOR NP N coNP




NP-completeness and NP N coNP

e Assume NP # coNP

* Under this assumption, we will prove that there are no NP-complete

languages in NP N coNP

* This will provide evidence that FACTOR is not NP-complete



coNP-hard NP-hard

FACTOR NP N coNP



coONP is closed under reductions

- Let Y, Y, C {0, 1}

Lemma: If Y; <p Y¥; and Y, € coNP, thenY; € coNP

* Proof: Since Y, € coNP, there is a polynomial-time “co-nondeterministic”

Turing machine M that decides Y,

* Given w € {0, 1}, run the reduction to produce w’, then run M on w'’



NP-completeness and NP N coNP

e LetY € NP N coNP

Claim: If Y is NP-complete, then NP = coNP

* Proof: Forany Z € NP, we have Z <p Y and Y € coNP
* By the lemma, Z € coNP, so NP € coNP

* By symmetry, we also have coNP € NP
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Intractability

* This course so far: How to identify intractability

* Up next: How to cope with intractability
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Coping with intractability

e Suppose you really want to decide Y

* You find proof/evidence that L & P (=

* Undecidability, EXP-hardness, NP-hardness...

* That doesn’t necessarily mean you’re out of luck...

* There are several approaches for coping with the factthat L € P
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Coping with intractability



Nontrivial exponential-time algorithms

e Evenif Y & P, it still might have a nontrivial algorithm. Example:

Theorem: There is an algorithm that determines whether a given

n-variable 3-CNF formula is satisfiable in time 0(1.308™).

 (Proof omitted. Not on exercises / exams)

* If your inputs happen to be relatively small, then maybe an

exponential time complexity is tolerable
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Pseudo-polynomial time algorithms

 Suppose Y = {{(x, k) : kK € N and (something)}
* “Polynomial time” means poly(n) time where n = |x| + log k

 However, if it’s reasonable to assume that k is small, then we might
be okay with poly(n') time wheren’ = |x| + k
e “Pseudo-polynomial time”

° Y’ — {(X; 1k> : k € N and (SOmething)}

* Interesting example: The knapsack problem
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The knapsack problem

* Given: Positive integers wy, ..., W, V4, ..., U, B
* Interpretation: There are k items
* Iltem i has weight w; (in pounds) and value v; (in dollars)

 We can carry up to B pounds of stuff in our knapsack

* Goal: FindasetS € {1, 2, ..., k} such that }.;cc v; is as large as

possible, subject to the constraint }),;cow; < B
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KNAPSACK is NP-complete

 KNAPSACK = {{wy, ..., Wy, vy, ..., U, B, V) : there exists § € {1, 2, ..., k}

such thatX;cow; < Band X5 v; =V}

Theorem: KNAPSACK is NP-complete

* Proof: It's in NP « We'll show SUBSET-SUM <p KNAPSACK

e Given (a4, ...,ay, T), produce (a4, ...,a;, a4, ...,ax, T, T)
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Knapsack in pseudo-polynomial time

« UNARY-VAL-KNAPSACK = {{wq, ..., Wy, 171, ..., 1Yk, B, 1") : there
exists S € {1, 2, ..., k} such that

YiesW; < Band X v; =V}

Theorem: UNARY-VAL-KNAPSACK € P

* Proof technique: Dynamic programming
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Theorem: UNARY-VAL-KNAPSACK € P

* Proof: We are given (wy, ..., wg, 11, ..., 1% B, 1")

* LetS;, €1{0,1, ..., j} minimize Ziesj,v w; subject to Ziesj,v vV =V
* Dummy item: wyg = vy = ©

*Forj=1tok,forv=1toV:

 Compute S;,, = whichever is less heavy: S;_;,, or {j}U Sj-1,v-v;

* If Xies,, Wi < B, then accept, otherwise reject
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Approximation algorithms

* Next approach for coping with intractability: approximation algorithms

* Example: Knapsack
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Approximation algorithm for Knapsack

* For every wy, ..., Wy, V4, ..., Vg, B, define

OPT = max{z v; : S C{1,.. k}and Ewi < B}

LES LES

Theorem: For every € > 0, there exists a poly-time algorithm such that
given wy, ..., Wy, V4, ..., Vg, B, the algorithm outputs S € {1, ..., k} such

that Y;cqow; < Band X1 = (1 —€) - OPT
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