CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

The complexity class coNP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in coNP$ if there exists a randomized polynomial-time

Turing machine M such that for every $w \in \{0, 1\}^*$:

- If $w \in Y$, then $\Pr[M \text{ rejects } w] = 0$
- If $w \notin Y$, then $\Pr[M \text{ rejects } w] \neq 0$

FACTOR \in coNP

- FACTOR = { $\langle K, R \rangle$: *K* has a prime factor *p* such that $p \le R$ }
- **Claim:** FACTOR \in coNP
- **Proof:** Given $\langle K, R \rangle$:
 - Nondeterministically guess numbers $d \leq \log K$ and $p_1, p_2, \dots, p_d \leq K$
 - If p_1, \dots, p_d are prime, $p_1 \cdot p_2 \cdot p_3 \cdots p_d = K$, and $\min(p_1, \dots, p_d) > R$, reject
 - Otherwise, accept

The complexity class NP \cap coNP

- We have shown that FACTOR \in NP and FACTOR \in coNP
- FACTOR \in NP \cap coNP
- $Y \in NP \cap coNP$ means that for every instance, there is a certificate
 - A certificate of membership for YES instances
 - A certificate of non-membership for NO instances

The NP vs. coNP problem

Conjecture: NP \neq coNP

- "NP = coNP" would mean that for every unsatisfiable circuit, there is some short certificate I could present to prove to you that a circuit is unsatisfiable
- That sounds counterintuitive! But we don't really know

NP-completeness and NP \cap coNP

- Assume NP \neq coNP
- Under this assumption, we will prove that there are no NP-complete languages in NP \cap coNP
- This will provide evidence that FACTOR is not NP-complete

coNP is closed under reductions

• Let $Y_1, Y_2 \subseteq \{0, 1\}^*$

Lemma: If $Y_1 \leq_P Y_2$ and $Y_2 \in \text{coNP}$, then $Y_1 \in \text{coNP}$

- **Proof:** Since $Y_2 \in \text{coNP}$, there is a polynomial-time "co-nondeterministic" Turing machine *M* that decides Y_2
- Given $w \in \{0, 1\}^*$, run the reduction to produce w', then run M on w'

NP-completeness and NP \cap coNP

• Let $Y \in NP \cap coNP$

Claim: If *Y* is NP-complete, then NP = coNP

- **Proof:** For any $Z \in NP$, we have $Z \leq_P Y$ and $Y \in coNP$
- By the lemma, $Z \in \text{coNP}$, so NP $\subseteq \text{coNP}$
- By symmetry, we also have $coNP \subseteq NP$

Intractability

- This course so far: How to identify intractability
- Up next: How to cope with intractability

Coping with intractability

- Suppose you really want to decide Y
- You find proof/evidence that $L \notin P$ 😟
 - Undecidability, EXP-hardness, NP-hardness...
- That doesn't necessarily mean you're out of luck...
- There are several approaches for coping with the fact that $L \notin P$

Coping with intractability

Nontrivial exponential-time algorithms

• Even if $Y \notin P$, it still might have a nontrivial algorithm. Example:

Theorem: There is an algorithm that determines whether a given n-variable 3-CNF formula is satisfiable in time $O(1.308^n)$.

- (Proof omitted. Not on exercises / exams)
- If your inputs happen to be relatively small, then maybe an exponential time complexity is tolerable

Pseudo-polynomial time algorithms

- Suppose $Y = \{ \langle x, k \rangle : k \in \mathbb{N} \text{ and (something)} \}$
- "Polynomial time" means poly(n) time where $n \approx |x| + \log k$
- However, if it's reasonable to assume that k is small, then we might be okay with poly(n') time where n' = |x| + k
 - "Pseudo-polynomial time"
 - $Y' = \{ \langle x, 1^k \rangle : k \in \mathbb{N} \text{ and (something)} \}$
- Interesting example: The knapsack problem

The knapsack problem

- Given: Positive integers $w_1, \ldots, w_k, v_1, \ldots, v_k, B$
 - Interpretation: There are k items
 - Item *i* has weight w_i (in pounds) and value v_i (in dollars)
 - We can carry up to *B* pounds of stuff in our knapsack
- Goal: Find a set $S \subseteq \{1, 2, ..., k\}$ such that $\sum_{i \in S} v_i$ is as large as possible, subject to the constraint $\sum_{i \in S} w_i \leq B$

KNAPSACK is NP-complete

• KNAPSACK = { $\langle w_1, \dots, w_k, v_1, \dots, v_k, B, V \rangle$: there exists $S \subseteq \{1, 2, \dots, k\}$

such that $\Sigma_{i \in S} w_i \leq B$ and $\Sigma_{i \in S} v_i \geq V$

Theorem: KNAPSACK is NP-complete

• **Proof:** It's in NP \checkmark We'll show SUBSET-SUM \leq_P KNAPSACK

• Given $\langle a_1, \dots, a_k, T \rangle$, produce $\langle a_1, \dots, a_k, a_1, \dots, a_k, T, T \rangle$

Knapsack in pseudo-polynomial time

• UNARY-VAL-KNAPSACK = { $\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, B, 1^V \rangle$: there exists $S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} w_i \leq B$ and $\Sigma_{i \in S} v_i \geq V$ }

Theorem: UNARY-VAL-KNAPSACK \in P

• Proof technique: Dynamic programming

Theorem: UNARY-VAL-KNAPSACK ∈ P

- **Proof:** We are given $\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, B, 1^V \rangle$
- Let $S_{j,v} \subseteq \{0, 1, ..., j\}$ minimize $\sum_{i \in S_{j,v}} w_i$ subject to $\sum_{i \in S_{j,v}} v_i \ge v$
 - Dummy item: $w_0 = v_0 = \infty$
- For j = 1 to k, for v = 1 to V:
 - Compute $S_{j,v}$ = whichever is less heavy: $S_{j-1,v}$ or $\{j\} \cup S_{j-1,v-v_j}$
- If $\sum_{i \in S_{k,V}} w_i \leq B$, then accept, otherwise reject

Approximation algorithms

- Next approach for coping with intractability: approximation algorithms
- Example: Knapsack

• For every $w_1, \dots, w_k, v_1, \dots, v_k, B$, define $OPT = \max\left\{\sum_{i \in S} v_i : S \subseteq \{1, \dots, k\} \text{ and } \sum_{i \in S} w_i \le B\right\}$

Theorem: For every $\epsilon > 0$, there exists a poly-time algorithm such that given $w_1, \ldots, w_k, v_1, \ldots, v_k, B$, the algorithm outputs $S \subseteq \{1, \ldots, k\}$ such that $\sum_{i \in S} w_i \leq B$ and $\sum_{i \in S} v_i \geq (1 - \epsilon) \cdot \text{OPT}$