
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ coNP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 rejects 𝑤 = 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 rejects 𝑤 ≠ 0

2

FACTOR ∈ coNP

• FACTOR = { 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 such that 𝑝 ≤ 𝑅}

• Claim: FACTOR ∈ coNP

• Proof: Given 𝐾, 𝑅 :

• Nondeterministically guess numbers 𝑑 ≤ log 𝐾 and 𝑝1, 𝑝2, … , 𝑝𝑑 ≤ 𝐾

• If 𝑝1, … , 𝑝𝑑 are prime, 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋯ 𝑝𝑑 = 𝐾, and min 𝑝1, … , 𝑝𝑑 > 𝑅, reject

• Otherwise, accept

3

PRIMES ∈ P

The complexity class NP ∩ coNP

• We have shown that FACTOR ∈ NP and FACTOR ∈ coNP

• FACTOR ∈ NP ∩ coNP

• 𝑌 ∈ NP ∩ coNP means that for every instance, there is a certificate

• A certificate of membership for YES instances

• A certificate of non-membership for NO instances

4

The NP vs. coNP problem

• “NP = coNP” would mean that for every unsatisfiable circuit, there is

some short certificate I could present to prove to you that a circuit is

unsatisfiable

• That sounds counterintuitive! But we don’t really know

5

Conjecture: NP ≠ coNP

6

P

NP

FACTOR NP ∩ coNP

coNP

PSPACE

NP-completeness and NP ∩ coNP

• Assume NP ≠ coNP

• Under this assumption, we will prove that there are no NP-complete

languages in NP ∩ coNP

• This will provide evidence that FACTOR is not NP-complete

7

8

P

NP

NP-hard

FACTOR

coNP-hard

NP ∩ coNP

coNP

coNP is closed under reductions

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Proof: Since 𝑌2 ∈ coNP, there is a polynomial-time “co-nondeterministic”

Turing machine 𝑀 that decides 𝑌2

• Given 𝑤 ∈ 0, 1 ∗, run the reduction to produce 𝑤′, then run 𝑀 on 𝑤′

9

Lemma: If 𝑌1 ≤P 𝑌2 and 𝑌2 ∈ coNP, then 𝑌1 ∈ coNP

NP-completeness and NP ∩ coNP

• Let 𝑌 ∈ NP ∩ coNP

• Proof: For any 𝑍 ∈ NP, we have 𝑍 ≤P 𝑌 and 𝑌 ∈ coNP

• By the lemma, 𝑍 ∈ coNP, so NP ⊆ coNP

• By symmetry, we also have coNP ⊆ NP

10

Claim: If 𝑌 is NP-complete, then NP = coNP

Intractability

• This course so far: How to identify intractability

• Up next: How to cope with intractability

11

Coping with intractability

• Suppose you really want to decide 𝑌

• You find proof/evidence that 𝐿 ∉ P

• Undecidability, EXP-hardness, NP-hardness…

• That doesn’t necessarily mean you’re out of luck…

• There are several approaches for coping with the fact that 𝐿 ∉ P

12

Coping with intractability

13

Nontrivial exponential-time algorithms

• Even if 𝑌 ∉ P, it still might have a nontrivial algorithm. Example:

• (Proof omitted. Not on exercises / exams)

• If your inputs happen to be relatively small, then maybe an

exponential time complexity is tolerable

14

Theorem: There is an algorithm that determines whether a given

𝑛-variable 3-CNF formula is satisfiable in time 𝑂 1.308𝑛 .

Pseudo-polynomial time algorithms

• Suppose 𝑌 = 𝑥, 𝑘 ∶ 𝑘 ∈ ℕ and (something)

• “Polynomial time” means poly 𝑛 time where 𝑛 ≈ 𝑥 + log 𝑘

• However, if it’s reasonable to assume that 𝑘 is small, then we might

be okay with poly 𝑛′ time where 𝑛′ = 𝑥 + 𝑘

• “Pseudo-polynomial time”

• 𝑌′ = 𝑥, 1𝑘 ∶ 𝑘 ∈ ℕ and (something)

• Interesting example: The knapsack problem

15

The knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵

• Interpretation: There are 𝑘 items

• Item 𝑖 has weight 𝑤𝑖 (in pounds) and value 𝑣𝑖 (in dollars)

• We can carry up to 𝐵 pounds of stuff in our knapsack

• Goal: Find a set 𝑆 ⊆ {1, 2, … , 𝑘} such that σ𝑖∈𝑆 𝑣𝑖 is as large as

possible, subject to the constraint σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵

16

KNAPSACK is NP-complete

• KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘}

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

• Proof: It’s in NP We’ll show SUBSET-SUM ≤P KNAPSACK

• Given 𝑎1, … , 𝑎𝑘 , 𝑇 , produce ⟨𝑎1, … , 𝑎𝑘 , 𝑎1, … , 𝑎𝑘 , 𝑇, 𝑇⟩

17

Theorem: KNAPSACK is NP-complete

Knapsack in pseudo-polynomial time

• UNARY-VAL-KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝐵, 1𝑉 ∶ there

 exists 𝑆 ⊆ {1, 2, … , 𝑘} such that

 Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

• Proof technique: Dynamic programming

18

Theorem: UNARY-VAL-KNAPSACK ∈ P

• Proof: We are given 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝐵, 1𝑉

• Let 𝑆𝑗,𝑣 ⊆ 0, 1, … , 𝑗 minimize σ𝑖∈𝑆𝑗,𝑣
𝑤𝑖 subject to σ𝑖∈𝑆𝑗,𝑣

𝑣𝑖 ≥ 𝑣

• Dummy item: 𝑤0 = 𝑣0 = ∞

• For 𝑗 = 1 to 𝑘, for 𝑣 = 1 to 𝑉:

• Compute 𝑆𝑗,𝑣 = whichever is less heavy: 𝑆𝑗−1,𝑣 or 𝑗 ∪ 𝑆𝑗−1,𝑣−𝑣𝑗

• If σ𝑖∈𝑆𝑘,𝑉
𝑤𝑖 ≤ 𝐵, then accept, otherwise reject

19

Theorem: UNARY-VAL-KNAPSACK ∈ P

Approximation algorithms

• Next approach for coping with intractability: approximation algorithms

• Example: Knapsack

20

Approximation algorithm for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, define

OPT = max

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and

𝑖∈𝑆

𝑤𝑖 ≤ 𝐵

21

Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that

given 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝐵, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such

that σ𝑖∈𝑆 𝑤𝑖 ≤ 𝐵 and σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: The complexity class co NP
	Slide 3: FACTOR element of coNP
	Slide 4: The complexity class NP intersection coNP
	Slide 5: The NP vs. coNP problem
	Slide 6
	Slide 7: NP-completeness and NP intersection coNP
	Slide 8
	Slide 9: coNP is closed under reductions
	Slide 10: NP-completeness and NP intersection coNP
	Slide 11: Intractability
	Slide 12: Coping with intractability
	Slide 13: Coping with intractability
	Slide 14: Nontrivial exponential-time algorithms
	Slide 15: Pseudo-polynomial time algorithms
	Slide 16: The knapsack problem
	Slide 17: KNAPSACK is NP-complete
	Slide 18: Knapsack in pseudo-polynomial time
	Slide 19
	Slide 20: Approximation algorithms
	Slide 21: Approximation algorithm for Knapsack

