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Hamiltonian paths

• Let 𝐺 be a directed graph

• Definition: A Hamiltonian path is a directed 

path that visits every vertex exactly once
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DIRECTED-HAM-PATH is NP-complete

• Let DIRECTED-HAM-PATH = { 𝐺, 𝑠, 𝑡 ∶

𝐺 is a digraph, 𝑠 and 𝑡 are vertices, and 

there exists a Hamiltonian path 

from 𝑠 to 𝑡}
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Theorem: DIRECTED-HAM-PATH is NP-complete
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Undirected Hamiltonian path

• Let 𝐺 be an undirected graph

• A Hamiltonian path in 𝐺 is a path that visits every vertex exactly once

• Let UNDIRECTED-HAM-PATH = { 𝐺, 𝑠, 𝑡 ∶ 𝐺 is an undirected graph,

 𝑠 and 𝑡 are vertices, and there exists a Hamiltonian path from 𝑠 to 𝑡}
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Theorem: UNDIRECTED-HAM-PATH is NP-complete



UNDIRECTED-HAM-PATH is NP-complete

• First, note that UNDIRECTED-HAM-PATH ∈ NP (why?)

• To prove that UNDIRECTED-HAM-PATH is NP-hard, we will do a 

reduction from DIRECTED-HAM-PATH
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Attempted reduction: “Replace each directed edge 𝑢, 𝑣  with an
undirected edge {𝑢, 𝑣}.” Does this work?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: It doesn’t work, because it
doesn’t always map YES to YES

A: Yes
B: It doesn’t work, because it
doesn’t run in polynomial time

D: It doesn’t work, because it
doesn’t always map NO to NO



From directed to undirected

• Reduction: Given 𝐺, 𝑠, 𝑡 , produce 𝐺′, 𝑠in, 𝑡out , constructed as follows:

1. Delete all edges going into 𝑠 or coming out of 𝑡

2.  

• YES maps to YES: Suppose 𝑠 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑘 → 𝑡 is a Hamiltonian path

• New Hamiltonian path in 𝐺′:

𝑠in ∼ 𝑠mid ∼ 𝑠out ∼ 𝑢1 in ∼ 𝑢1 mid ∼ 𝑢1 out ∼ 𝑢2 in ∼ ⋯ ∼ 𝑢𝑘 out ∼ 𝑡in ∼ 𝑡mid ∼ 𝑡out
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• NO maps to NO: Suppose 𝐺′ has a Hamiltonian path from 𝑠in to 𝑡out

• We deleted edges going into 𝑠, so the path begins 𝑠in ∼ 𝑠mid ∼ 𝑠out

• For every 𝑢, path must eventually use edges 𝑢in ∼ 𝑢mid ∼ 𝑢out

• Therefore, the path has the form

𝑠in ∼ 𝑠mid ∼ 𝑠out ∼ 𝑢1 in ∼ 𝑢1 mid ∼ 𝑢1 out ∼ 𝑢2 in ∼ ⋯ ∼ 𝑢𝑘 out ∼ 𝑡in ∼ 𝑡mid ∼ 𝑡out

• Hamiltonian path in 𝐺: 𝑠 → 𝑢1 → 𝑢2 → ⋯ → 𝑢𝑘 → 𝑡
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Hamiltonian cycles

• Let 𝐺 be an undirected graph

• A Hamiltonian cycle is a cycle that visits every vertex exactly once

• Let UNDIRECTED-HAM-CYCLE = { 𝐺 ∶ 𝐺 is an undirected graph with

        at least one Hamiltonian cycle}
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Theorem: UNDIRECTED-HAM-CYCLE is NP-complete



UNDIRECTED-HAM-CYCLE is NP-complete

• Proof: First note that UNDIRECTED-HAM-CYCLE ∈ NP (why?)

• To prove NP-hardness, we do a reduction from UNDIRECTED-HAM-PATH
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From paths to cycles

• Reduction: Given 𝐺, 𝑠, 𝑡 , add

one new vertex 𝑣∗ and two new edges {𝑠, 𝑣∗} and {𝑡, 𝑣∗}

• Poly-time computable 
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Comparison: Eulerian cycles

• Let 𝐺 be an undirected graph

• An Eulerian cycle is a cycle that traverses every 

edge exactly once (possibly visiting some vertices 

multiple times)
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Eulerian cycles vs. Hamiltonian cycles

• Which graphs have Eulerian cycles?

• Let 𝐺 be a simple, undirected, connected graph

• Euler’s Theorem: 𝐺 has an Eulerian cycle if and only if every vertex has even degree

• (Proof omitted)

• Which graphs have Hamiltonian cycles?

• There is probably no “good” answer to this question!
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NP-completeness is everywhere

• There are thousands of known NP-complete problems!

• These problems come from many different areas of study

• Logic, graph theory, number theory, scheduling, optimization, economics, 

physics, chemistry, biology, …
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Proving that 𝑌NEW is NP-complete (“cheat sheet”)

1. Prove that 𝑌NEW ∈ NP

• What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that 𝑌NEW is NP-hard

• Which NP-complete language 𝑌OLD are you reducing from?

• What is the reduction? “Given 𝑤, construct 𝑤′.” How is 𝑤′ defined? Polynomial time?

• YES maps to YES: Assume there is a certificate 𝑥 showing 𝑤 ∈ 𝑌OLD. In terms of 𝑥, describe a 

certificate 𝑦 showing that 𝑤′ ∈ 𝑌NEW.

• NO maps to NO: (Contrapositive) Assume there is a certificate 𝑦 showing 𝑤′ ∈ 𝑌NEW. In 

terms of 𝑦, describe a certificate 𝑥 showing that 𝑤 ∈ 𝑌OLD.
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NP-complete languages stand or fall together

• If you design a poly-time algorithm for one NP-complete language, then 

P = NP, so all NP-complete languages can be decided in poly time!

• If you prove that one NP-complete language cannot be decided in poly 

time, then P ≠ NP, so no NP-complete language can be decided in poly 

time!
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Complexity of factoring integers

• Recall FACTOR = 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑅

• In most cases, if a language 𝑌 is in NP, then we can either prove 𝑌 ∈ P 

or we can prove that 𝑌 is NP-complete

• FACTOR is one of the rare exceptions to this rule

• Conjecture: FACTOR is neither in P nor NP-complete!
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Complexity of factoring integers

• Why do experts expect that FACTOR is not NP-complete?

• Key: The complexity class coNP

• Informal definition: coNP is like NP, except that we swap the roles of 

“yes” and “no”

22



The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ coNP if there exists a randomized polynomial-time 

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 = 1

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≠ 1
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The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗ and let ത𝑌 = 0, 1 ∗ ∖ 𝑌

• Fact: 𝑌 ∈ NP if and only if ത𝑌 ∈ coNP

• coNP is the set of complements of languages in NP
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What is coP?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: The set of algorithms that do
not run in polynomial time

A: The set of languages that are
not in P

D: The notion of “coP” doesn’t
make any sense

B: coP = P



The complexity class coNP

• Example: We say that a Boolean formula is unsatisfiable if it is not 

satisfiable

• Let 3-UNSAT = { 𝜙 ∶ 𝜙 is an unsatisfiable 3-CNF formula}

• Then 3-UNSAT ∈ coNP, because a satisfying assignment is a 

certificate showing that 𝜙 ∉ 3-UNSAT

25



FACTOR ∈ coNP 

• FACTOR = { 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 such that 𝑝 ≤ 𝑅}

• Claim: FACTOR ∈ coNP

• Proof: Given 𝐾, 𝑅 :

• Nondeterministically guess numbers 𝑑 ≤ log 𝐾 and 𝑝1, 𝑝2, … , 𝑝𝑑 ≤ 𝐾

• If 𝑝1, … , 𝑝𝑑 are prime, 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋯ 𝑝𝑑 = 𝐾, and min 𝑝1, … , 𝑝𝑑 > 𝑅, reject

• Otherwise, accept
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