CMSC 28100

Introduction to Complexity Theory

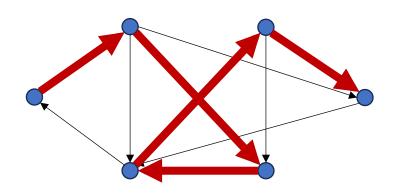
Spring 2025 Instructor: William Hoza

1

Hamiltonian paths

- Let G be a directed graph
- **Definition:** A Hamiltonian path is a directed

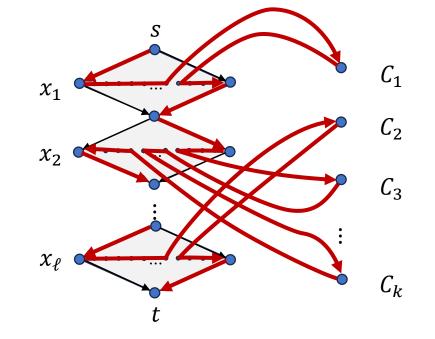
path that visits every vertex exactly once



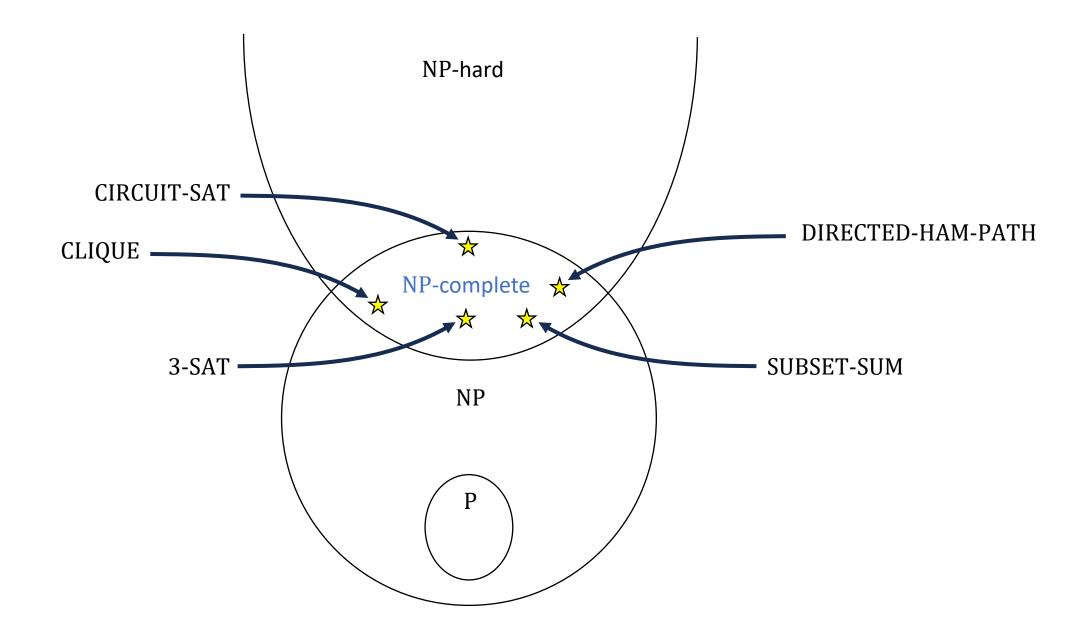
DIRECTED-HAM-PATH is NP-complete

Let DIRECTED-HAM-PATH = {\langle G, s, t \rangle :
 G is a digraph, s and t are vertices, and
 there exists a Hamiltonian path

from s to t}



Theorem: DIRECTED-HAM-PATH is NP-complete



Undirected Hamiltonian path

- Let G be an undirected graph
- A Hamiltonian path in G is a path that visits every vertex exactly once
- Let UNDIRECTED-HAM-PATH = { $\langle G, s, t \rangle$: G is an undirected graph,

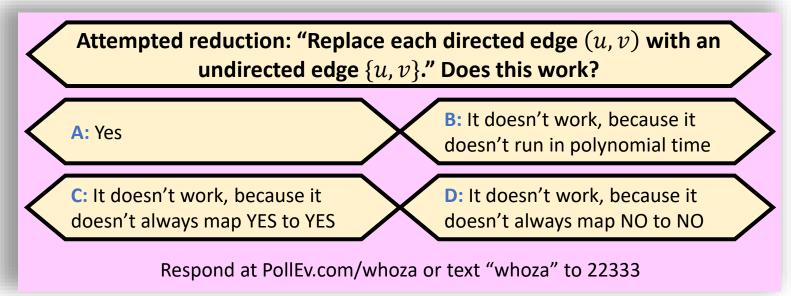
s and *t* are vertices, and there exists a Hamiltonian path from *s* to *t*}

Theorem: UNDIRECTED-HAM-PATH is NP-complete

UNDIRECTED-HAM-PATH is NP-complete

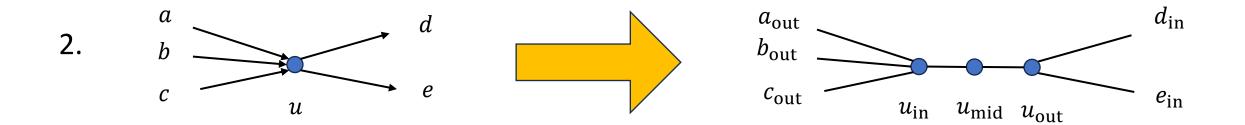
- First, note that UNDIRECTED-HAM-PATH ∈ NP (why?)
- To prove that UNDIRECTED-HAM-PATH is NP-hard, we will do a

reduction from DIRECTED-HAM-PATH



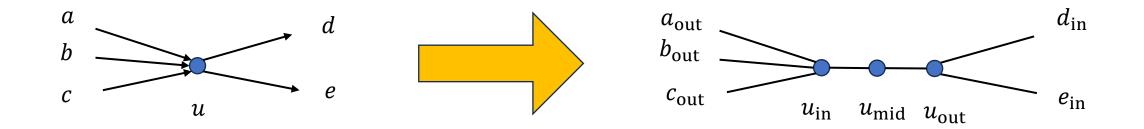
From directed to undirected

- Reduction: Given $\langle G, s, t \rangle$, produce $\langle G', s_{in}, t_{out} \rangle$, constructed as follows:
 - 1. Delete all edges going into *s* or coming out of *t*



- YES maps to YES: Suppose $s \to u_1 \to u_2 \to \cdots \to u_k \to t$ is a Hamiltonian path
- New Hamiltonian path in G':

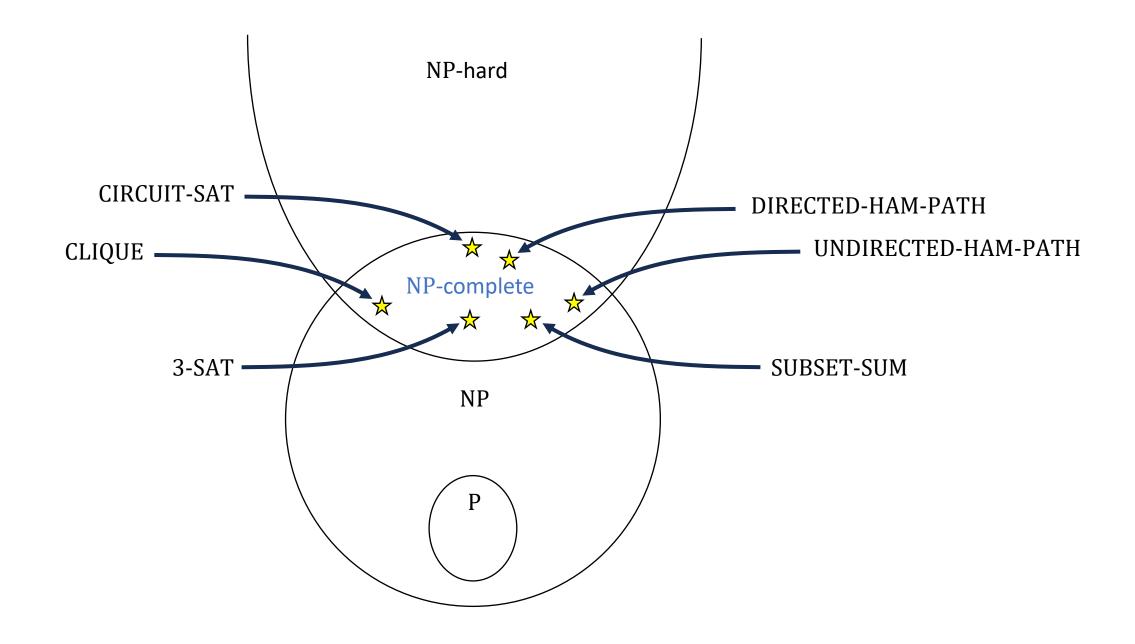
 $s_{\text{in}} \sim s_{\text{mid}} \sim s_{\text{out}} \sim (u_1)_{\text{in}} \sim (u_1)_{\text{mid}} \sim (u_1)_{\text{out}} \sim (u_2)_{\text{in}} \sim \cdots \sim (u_k)_{\text{out}} \sim t_{\text{in}} \sim t_{\text{mid}} \sim t_{\text{out}}$



- NO maps to NO: Suppose G' has a Hamiltonian path from s_{in} to t_{out}
- We deleted edges going into s, so the path begins $s_{in} \sim s_{mid} \sim s_{out}$
- For every u, path must eventually use edges $u_{
 m in} \sim u_{
 m mid} \sim u_{
 m out}$
- Therefore, the path has the form

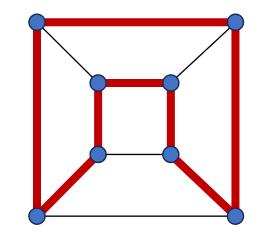
 $s_{\mathrm{in}} \sim s_{\mathrm{mid}} \sim s_{\mathrm{out}} \sim (u_1)_{\mathrm{in}} \sim (u_1)_{\mathrm{mid}} \sim (u_1)_{\mathrm{out}} \sim (u_2)_{\mathrm{in}} \sim \cdots \sim (u_k)_{\mathrm{out}} \sim t_{\mathrm{in}} \sim t_{\mathrm{mid}} \sim t_{\mathrm{out}}$

• Hamiltonian path in $G: s \to u_1 \to u_2 \to \dots \to u_k \to t$



Hamiltonian cycles

• Let G be an undirected graph



- A Hamiltonian cycle is a cycle that visits every vertex exactly once
- Let UNDIRECTED-HAM-CYCLE = $\{\langle G \rangle : G \text{ is an undirected graph with}$

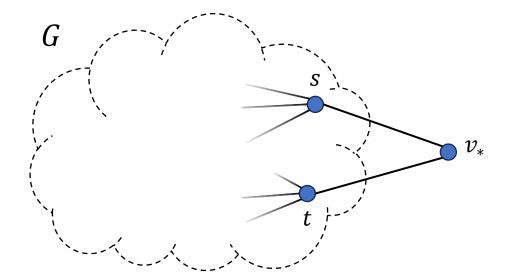
at least one Hamiltonian cycle}

Theorem: UNDIRECTED-HAM-CYCLE is NP-complete

UNDIRECTED-HAM-CYCLE is NP-complete

- **Proof:** First note that UNDIRECTED-HAM-CYCLE ∈ NP (why?)
- To prove NP-hardness, we do a reduction from UNDIRECTED-HAM-PATH

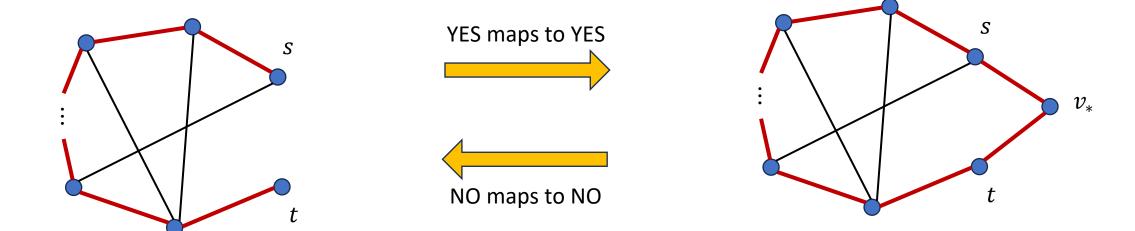
From paths to cycles

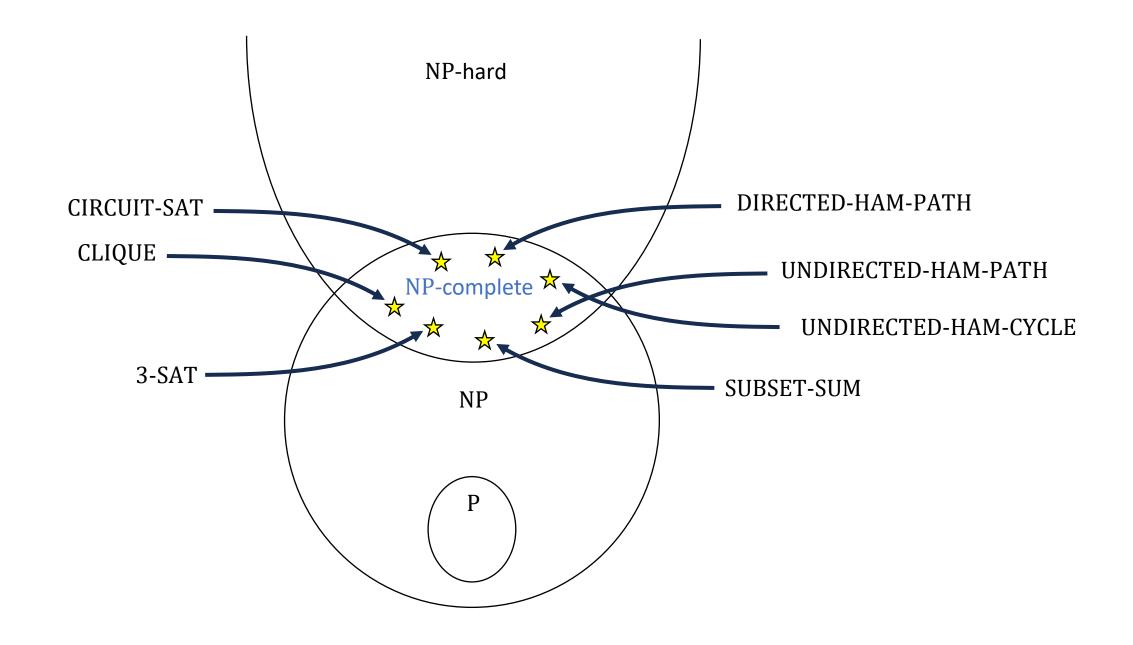


• Reduction: Given $\langle G, s, t \rangle$, add

one new vertex v_* and two new edges $\{s, v_*\}$ and $\{t, v_*\}$

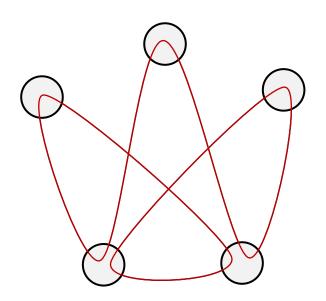
• Poly-time computable 🗸





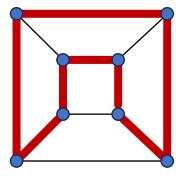
Comparison: Eulerian cycles

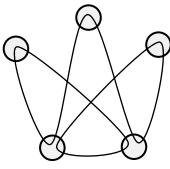
- Let G be an undirected graph
- An Eulerian cycle is a cycle that traverses every edge exactly once (possibly visiting some vertices multiple times)

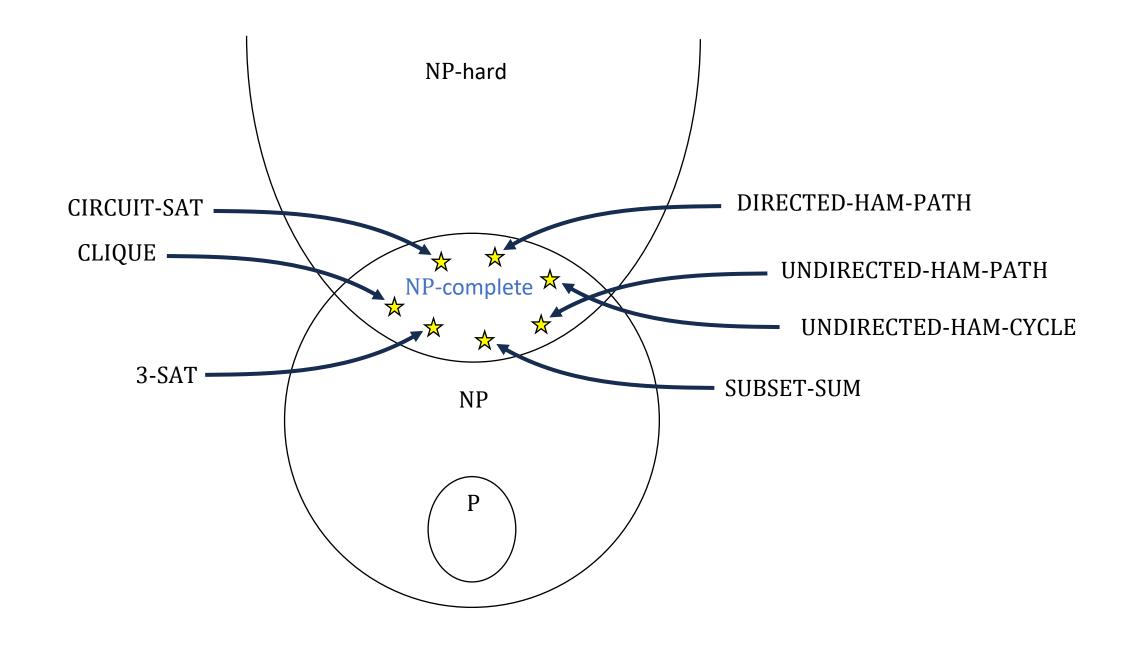


Eulerian cycles vs. Hamiltonian cycles

- Which graphs have Eulerian cycles?
 - Let G be a simple, undirected, connected graph
 - Euler's Theorem: G has an Eulerian cycle if and only if every vertex has even degree
 - (Proof omitted)
- Which graphs have Hamiltonian cycles?
 - There is probably no "good" answer to this question!







NP-completeness is everywhere

- There are thousands of known NP-complete problems!
- These problems come from many different areas of study
 - Logic, graph theory, number theory, scheduling, optimization, economics, physics, chemistry, biology, ...

Proving that Y_{NEW} is NP-complete ("cheat sheet")

- 1. Prove that $Y_{\text{NEW}} \in \text{NP}$
 - What is the certificate? How can you verify a purported certificate in polynomial time?
- 2. Prove that Y_{NEW} is NP-hard
 - Which NP-complete language Y_{OLD} are you reducing from?
 - What is the reduction? "Given w, construct w'." How is w' defined? Polynomial time?
 - YES maps to YES: Assume there is a certificate x showing $w \in Y_{OLD}$. In terms of x, describe a certificate y showing that $w' \in Y_{NEW}$.
 - NO maps to NO: (Contrapositive) Assume there is a certificate y showing $w' \in Y_{NEW}$. In terms of y, describe a certificate x showing that $w \in Y_{OLD}$.

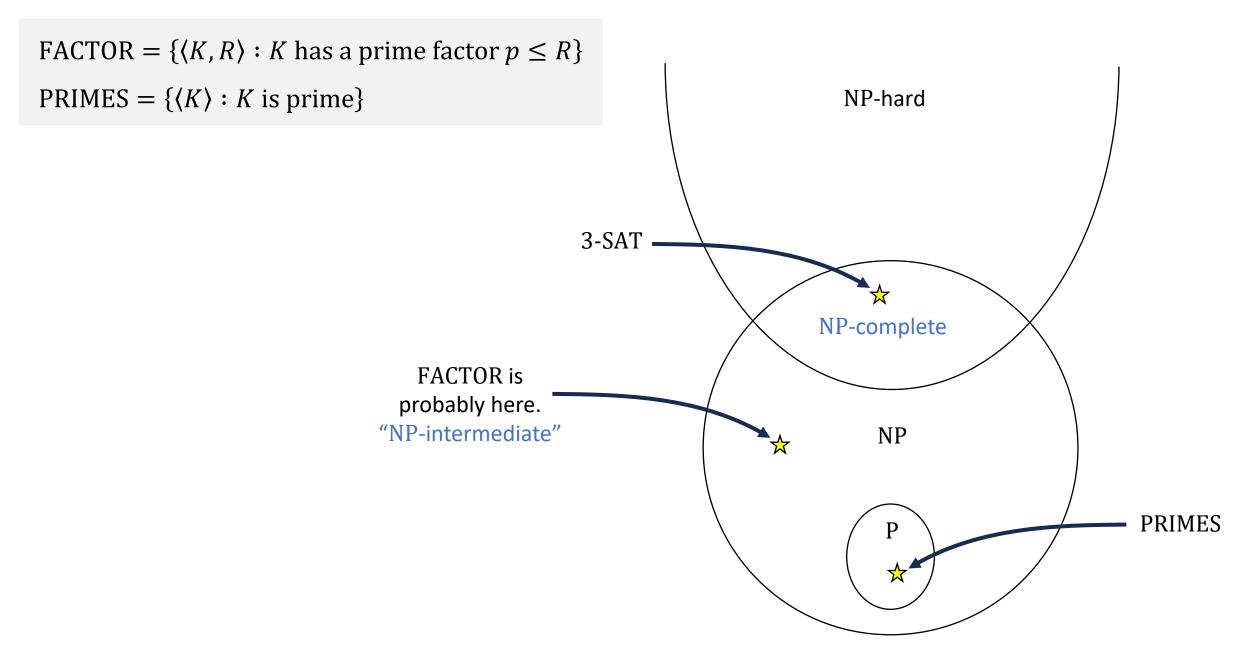
NP-complete languages stand or fall together

- If you design a poly-time algorithm for one NP-complete language, then
 - P = NP, so all NP-complete languages can be decided in poly time!

 If you prove that one NP-complete language cannot be decided in poly time, then P ≠ NP, so no NP-complete language can be decided in poly time!

Complexity of factoring integers

- Recall FACTOR = { $\langle K, R \rangle$: *K* has a prime factor $p \leq R$ }
- In most cases, if a language Y is in NP, then we can either prove $Y \in P$ or we can prove that Y is NP-complete
- FACTOR is one of the rare exceptions to this rule
- **Conjecture:** FACTOR is neither in P nor NP-complete!



Complexity of factoring integers

- Why do experts expect that FACTOR is not NP-complete?
- Key: The complexity class **coNP**
- Informal definition: coNP is like NP, except that we swap the roles of "yes" and "no"

The complexity class coNP

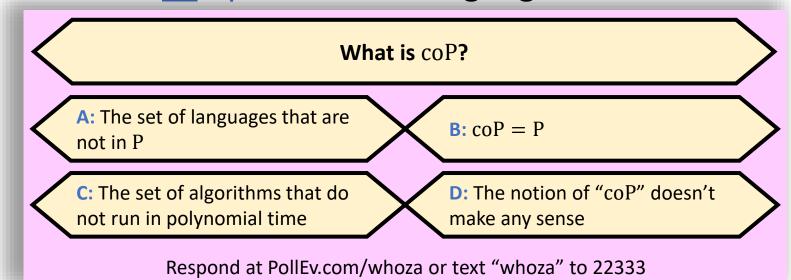
- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in coNP$ if there exists a randomized polynomial-time

Turing machine M such that for every $w \in \{0, 1\}^*$:

- If $w \in Y$, then $\Pr[M \text{ accepts } w] = 1$
- If $w \notin Y$, then $\Pr[M \text{ accepts } w] \neq 1$

The complexity class coNP

- Let $Y \subseteq \{0,1\}^*$ and let $\overline{Y} = \{0,1\}^* \setminus Y$
- Fact: $Y \in NP$ if and only if $\overline{Y} \in coNP$
- coNP is the set of <u>complements</u> of languages in NP



The complexity class coNP

- Example: We say that a Boolean formula is unsatisfiable if it is not satisfiable
- Let 3-UNSAT = { $\langle \phi \rangle : \phi$ is an unsatisfiable 3-CNF formula}
- Then 3-UNSAT \in coNP, because a satisfying assignment is a certificate showing that $\phi \notin$ 3-UNSAT

FACTOR \in coNP

- FACTOR = { $\langle K, R \rangle$: *K* has a prime factor *p* such that $p \le R$ }
- **Claim:** FACTOR \in coNP
- **Proof:** Given $\langle K, R \rangle$:
 - Nondeterministically guess numbers $d \leq \log K$ and $p_1, p_2, \dots, p_d \leq K$

PRIMES ∈ P

- If p_1, \dots, p_d are prime, $p_1 \cdot p_2 \cdot p_3 \cdots p_d = K$, and $\min(p_1, \dots, p_d) > R$, reject
- Otherwise, accept

26