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𝑘-CNF formulas

• Recall: A CNF formula is an “AND of ORs of literals”

• Definition: A 𝑘-CNF formula is a CNF formula in which every clause 

has at most 𝑘 literals

• Example of a 3-CNF formula with two clauses:

𝜙 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥6 ∧ 𝑥5 ∨ 𝑥1 ∨ 𝑥2
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The Cook-Levin Theorem

• Define 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}
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The Cook-Levin Theorem: 3-SAT is NP-complete
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Chaining reductions together

• 3-SAT is the starting point for many NP-hardness

proofs

• We are finally ready to prove that CLIQUE is NP-complete
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CLIQUE is NP-complete

• Recall CLIQUE = 𝐺, 𝑘 ∶ 𝐺 contains a 𝑘-clique

• Proof: We showed CLIQUE ∈ NP in a previous class

• To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT
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Theorem: CLIQUE is NP-complete



Proof that 3-SAT ≤P CLIQUE

• Let 𝜙 be a 3-CNF formula (an instance of 3-SAT)

• Reduction: Given 𝜙 , produce ⟨𝐺, 𝑘⟩

• 𝑘 is the number of clauses in 𝜙

• 𝐺 is a graph on ≤ 3𝑘 vertices defined as follows
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Reduction from 3-SAT to CLIQUE

• E.g., 𝜙 = 𝑥1 ∨ 𝑥2 ∨ ҧ𝑥5 ∧ ҧ𝑥1 ∨ 𝑥4 ∨ 𝑥6

∧ 𝑥2 ∨ 𝑥4 ∨ ҧ𝑥3 ∧ 𝑥3 ∨ ҧ𝑥6 ∨ 𝑥1

8

ҧ𝑥1

𝑥4

𝑥6

𝑥1 𝑥2 ҧ𝑥5

𝑥2

𝑥4

ҧ𝑥3

𝑥3 ҧ𝑥6 𝑥1

• For each clause ℓ1 ∨ ℓ2 ∨ ℓ3 , create a 

“group” of three vertices labeled 

ℓ1, ℓ2, ℓ3

• (If the clause only has one or two literals, 

then only use one or two vertices)

• Put an edge {𝑢, 𝑣} if 𝑢 and 𝑣 are in 

different groups and 𝑢 and 𝑣 do not 

have contradictory labels (𝑥𝑖 and ҧ𝑥𝑖)



YES maps to YES

• Suppose there exists 𝑥 such that 𝜙 𝑥 = 1

• In each clause, at least one literal is satisfied by 𝑥

• Therefore, in each group, at least one vertex is “satisfied by 𝑥,” i.e., it 

is labeled by a literal that is satisfied by 𝑥

• Let 𝑆 be a set consisting of one satisfied vertex from each group

• Then 𝑆 is a 𝑘-clique (vertices in 𝑆 cannot have contradictory labels)
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NO maps to NO

• Suppose 𝐺 has a 𝑘-clique 𝑆

• Let 𝑥 be an assignment that satisfies each vertex in 𝑆

• This exists because no two vertices in 𝑆 have contradictory labels

• 𝑆 cannot contain two vertices from a single group, and 𝑆 = 𝑘, so 𝑆 must 

contain one vertex from each group

• Therefore, 𝑥 satisfies at least one literal in each clause, so 𝜙 𝑥 = 1
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Poly-time computable

• Hopefully it is clear that given 𝜙 , one can 

construct 𝐺, 𝑘  in polynomial time
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The subset sum problem

SUBSET-SUM = 𝑎1, … , 𝑎𝑘 , 𝑇 ∶  
𝑎1, … , 𝑎𝑘 , 𝑇 ∈ ℕ and there exists

𝐼 ⊆ 1, … , 𝑘  such that σ𝑖∈𝐼 𝑎𝑖 = 𝑇
 

• Proof: SUBSET-SUM ∈ NP. (Why?)

• We will prove it is NP-hard by reduction from 3-SAT
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Theorem: SUBSET-SUM is NP-complete



Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 14

Integers 
represented 
in base 8

Given 𝜙  with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, the reduction produces:

• Suppose 𝜙 𝑥 = 1

• If 𝑥𝑖 = 1, select 𝑎𝑥𝑖

• If 𝑥𝑖 = 0, select 𝑎 ҧ𝑥𝑖

• If only two literals in 𝑐𝑗  are 

satisfied, select 𝑎𝑐𝑗

• If only one literal in 𝑐𝑗  is 

satisfied, select 𝑎𝑐𝑗
 and 𝑎𝑐𝑗

′

• Selected numbers sum to 𝑇 



Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 15

Integers 
represented 
in base 8

Given 𝜙  with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, the reduction produces:

• Suppose a subset of the 

numbers sum to 𝑇

• There are no “carries,” because 

each column has at most five 

ones

• If 𝑎𝑥𝑖
 is selected, set 𝑥𝑖 = 1

• If 𝑎 ҧ𝑥𝑖
 is selected, set 𝑥𝑖 = 0

• Each clause must have at least 

one satisfied literal 



Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 16

Integers 
represented 
in base 8

Given 𝜙  with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, the reduction produces:

• Reduction can be 

performed in polynomial 

time 
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Hamiltonian paths

• Let 𝐺 be a directed graph

• Definition: A Hamiltonian path is a directed 

path that visits every vertex exactly once
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DIRECTED-HAM-PATH is NP-complete

• Let DIRECTED-HAM-PATH = { 𝐺, 𝑠, 𝑡 ∶ 𝐺 is a digraph, 𝑠 and 𝑡 are 

vertices, and there exists a Hamiltonian path from 𝑠 to 𝑡}

• Proof: First, note DIRECTED-HAM-PATH ∈ NP. (Why?)

• To show NP-hardness, we will do a reduction from 3-SAT
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Theorem: DIRECTED-HAM-PATH is NP-complete



Proof that 3-SAT ≤P DIRECTED-HAM-PATH

• Let 𝜙 = 𝐶1 ∧ 𝐶2 ∧ ⋯ ∧ 𝐶𝑘  be a 

3-CNF formula on variables 

𝑥1, … , 𝑥ℓ

• Reduction: Given 𝜙 , produce 

⟨𝐺, 𝑠, 𝑡⟩ defined on this and 

upcoming slides
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𝑥1

𝑥2

𝑥ℓ

⋮

⋮

𝐶1

𝐶2

𝐶3

𝐶𝑘

“variable gadgets”

𝑠

𝑡

“clause nodes”



• 6𝑘 − 1 nodes inside diamond (enough for all possible detours)
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𝑥𝑖 ⋯

𝐶𝑗 = (𝑥𝑖 ∨ ⋯

“positive detour”

𝐶𝑗′ = ( 𝑥𝑖  ∨ ⋯ 

“negative detour”
“detour separators”

Poly-time computable  

Proof that 3-SAT ≤P DIRECTED-HAM-PATH



Proof that 3-SAT ≤P DIRECTED-HAM-PATH

• YES maps to YES: Let 𝑥 be a 

satisfying assignment to 𝜙

• Depending on assignment to 𝑥𝑖, we 

“zig-zag” or “zag-zig” through 𝑥𝑖 

diamond

• Each clause has a satisfied literal; 

insert the corresponding detour
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Proof that 3-SAT ≤P DIRECTED-HAM-PATH

• NO maps to NO: Consider any 

Hamiltonian path from 𝑠 to 𝑡

• Assign value to 𝑥𝑖 based on edge 

traversed from top of 𝑥𝑖 diamond

• We must show that this assignment 

satisfies every clause
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Proof that 3-SAT ≤P DIRECTED-HAM-PATH

• Consider any clause node 𝐶𝑗. Path visits 𝐶𝑗  from

some 𝑥𝑖 diamond. WLOG, 𝐶𝑗 = (𝑥𝑖 ∨ ⋯ )

• Claim: The path goes from 𝐶𝑗

back to that same diamond (𝑥𝑖)

• Proof: The path must enter 𝑎 from the left.

Therefore, the path must exit 𝑎 to the right.

Therefore, the path must exit 𝑐 to the right, so the path must enter 𝑐 from 𝐶𝑗  
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⋯
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Proof that 3-SAT ≤P DIRECTED-HAM-PATH

• Consequence: If we traverse a “TRUE” 

edge, then we can only take “positive 

detours” in that diamond

• If we traverse a “FALSE” edge, then 

we can only take “negative detours” 

in that diamond

• Therefore, every clause is satisfied
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