CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

k-CNF formulas

e Recall: A CNF formula is an “AND of ORs of literals”

* Definition: A k-CNF formula is a CNF formula in which every clause

has at most k literals

 Example of a 3-CNF formula with two clauses:

b=, Vi, Vig) AN(xsVxyVxy)

The Cook-Levin Theorem

* Define k-SAT = {{¢) : ¢ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

NP-hard

CIRCUIT-SAT

w

NP-complete

w

3-SAT

NP

Chaining reductions together

e 3-SAT is the starting point for many NP-hardness

proofs

* We are finally ready to prove that CLIQUE is NP-complete

CLIQUE is NP-complete

 Recall CLIQUE = {{G, k) : G contains a k-clique}

Theorem: CLIQUE is NP-complete

* Proof: We showed CLIQUE € NP in a previous class

* To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

Proof that 3-SAT <p CLIQUE

* Let ¢ be a 3-CNF formula (an instance of 3-SAT)

 Reduction: Given (¢), produce (G, k)

* k isthe number of clauses in ¢

e G isagraph on < 3k vertices defined as follows

Reduction from 3-SAT to CLIQUE

* For each clause (£, V £, V £3), createa * B8, @ = (x1 V2 VX5) A (%1 Vx4 V Xe)

“sroup” of three vertices labeled Ay Vixg V) A(xs VTV ixg)

£1, '€2; £3 / X4 X5 Xs \

e (If the clause only has one or two literals,

then only use one or two vertices) X1 ‘ X2
* Put an edge {u, v} ifuand v arein : &
different groups and u and v do not & X3

have contradictory labels (x; and X;) \) (%) (% /

YES maps to YES

* Suppose there exists x such that ¢p(x) =1 %

* In each clause, at least one literal is satisfied by x

* Therefore, in each group, at least one vertex is “satisfied by x,” i.e., it

is labeled by a literal that is satisfied by x
* Let S be a set consisting of one satisfied vertex from each group

* Then S is a k-clique (vertices in S cannot have contradictory labels)

NO maps to NO o

e Suppose G has a k-clique S

* Let x be an assignment that satisfies each vertex in §

* This exists because no two vertices in S have contradictory labels

S cannot contain two vertices from a single group, and |S| = k, so S must

contain one vertex from each group

* Therefore, x satisfies at |least one literal in each clause, so p(x) = 1

10

Poly-time computable

* Hopefully it is clear that given (¢), one can

construct (G, k) in polynomial time

x1) (x2) (X5

x3) (Xg) (X1

11

CIRCUIT-SAT

CLIQUE

3-SAT

NP-hard

¥
NP-complete

w

12

The subset sum problem

()
, ..., a, T € N and th ist
SUBSET-SUM = {{a4,...,a;, T) : Ay, .., A and there exists

\ I {1,.. k}suchthat },;c;a; =T

Theorem: SUBSET-SUM is NP-complete

* Proof: SUBSET-SUM € NP. (Why?)

* We will prove it is NP-hard by reduction from 3-SAT

13

Proof that 3-SAT <, SUBSET-SUM

Given (¢) with variables x4, ..., x,, and clauses cq, ..., ¢;;;, the reduction produces:

X1 Xy Xni €1 C2 Cm
an= 10 0 Does x, appearin c,? * Suppose ¢(x) —1
Az, 1 0 0!
a, 1 0 E * Ifx; =1, select ay,
Az, = 1 0 i * Ifx; =0, select ag,
‘ P i1 Does X, appearin c,,?
Axn = 1 o 1 * If only two literals in ¢; are
Az, = i 1 .. J
Integers | i _____________________ satisfied, select A
represented < ac, = 0 0 _ o
in base 8 a, = i 0 0 * If only one literal in ¢; is
Ac, = | 1 0 satisfied, select a.; and a,
ac, = i 1 0
: i : * Selected numberssumto T «
ac, = | 1
Ac,, = 1
. TI'= 1 1 1 i 3 3 3 3

Proof that 3-SAT <, SUBSET-SUM

Given (¢) with variables x4, ..., x,, and clauses cq, ..., ¢;;;, the reduction produces:

X1 Xy Xni €1 C2 Cm
______________________________ S — : 5
= 10 0 Does x; appearin ;¢ « gypnose a subset of the
Az, 1 0 0!
4 1 0! numbers sumto T
X2 :
af% B 1 O i o _ . * There are no “carries,” because
: ! t 1 Does X, appearin ¢,,?
Ay, = 1 e 1 each column has at most five
Az, = i .- ones
Integers | O
represented < Ac, = i 0 0 * Ifay, is selected, setx; = 1
in base 8 ac, = | 0 0
a,, = | 1 0 * If ag, is selected, set x; = 0
aCZ_ B i 1 0 * Each clause must have at least
ac, = i 1 one satisfied literal «
ac, = | 1
. T= 1 1 113 3 3 3 15

Proof that 3-SAT <, SUBSET-SUM

Given (¢) with variables x4, ..., x,, and clauses cq, ..., ¢;;;, the reduction produces:

X1 X2 Xni €1 C2 Cm
------------------------------ TR .
gy = 10 0 Does x; appearin ¢;? « Reduction can be
afl 1 0 0 i . 5
a, 1 0 performed in polynomial
af% - ! O i .. _ : time
‘ | t 1 Does X, appearin ¢,,?
axn = i 1 1
ar - 01 - [
Integers | —
represented < @, = 0 0
in base 8 Ac, = 0 0
aCZ - i 1 0
ac, = i 1 0
ac,, = i 1
Ac,, = | 1
. T= 1 1 13 3 3 3

CIRCUIT-SAT

CLIQUE

3-SAT

NP-hard

¥
NP-complete

w %

NP

SUBSET-SUM

17

Hamiltonian paths

* Let G be a directed graph

* Definition: A Hamiltonian path is a directed

path that visits every vertex exactly once

18

DIRECTED-HAM-PATH is NP-complete

* Let DIRECTED-HAM-PATH = {(G, s, t) : G is a digraph, s and t are

vertices, and there exists a Hamiltonian path from s to t}

Theorem: DIRECTED-HAM-PATH is NP-complete

* Proof: First, note DIRECTED-HAM-PATH € NP. (Why?)

* To show NP-hardness, we will do a reduction from 3-SAT

19

Proof that 3-SAT <p DIRECTED-HAM-PATH

cletp =C{ ANC, A---ANC, bea
3-CNF formula on variables

X1y ey Xy

 Reduction: Given {¢), produce
(G, s, t) defined on this and

upcoming slides

S

X1

X2

Xp < >
t

“variable gadgets”

o Cy
o Cy
o Cs
@ Cy

“clause nodes”

20

Proof that 3-SAT <p DIRECTED-HAM-PATH

"""""""""""""""""""""""""""" “positive detour”

C] = (xl. \VARRE

“detour separators”
“negative detour”

6k — 1 nodes inside diamond (enough for all possible detours)

Proof that 3-SAT <p DIRECTED-HAM-PATH

* YES maps to YES: Let x be a

satisfying assighment to ¢

* Depending on assignment to x;, we
“zig-zag” or “zag-zig” through x;
diamond

e Each clause has a satisfied literal;

insert the corresponding detour

22

Proof that 3-SAT <p DIRECTED-HAM-PATH

* NO maps to NO: Consider any

Hamiltonian path from sto ¢t

0 x
* Assign value to x; based on edge 2 0’

traversed from top of x; diamond

* We must show that this assignment

satisfies every clause

23

Proof that 3-SAT <p DIRECTED-HAM-PATH

* Consider any clause node C;. Path visits (; from G

some x; diamond. WLOG, C; = (x; V --+)

* Claim: The path goes from (; ~

back to that same diamond (x;) a b ¢

* Proof: The path must enter a from the left.

Therefore, the path must exit a to the right.

Therefore, the path must exit ¢ to the right, so the path must enter ¢ from (;

Proof that 3-SAT <p DIRECTED-HAM-PATH

* Consequence: If we traverse a “TRUE”
edge, then we can only take “positive

detours” in that diamond

* If we traverse a “FALSE” edge, then

we can only take “negative detours” Xy

in that diamond

* Therefore, every clause is satisfied

25

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: k-CNF formulas
	Slide 3: The Cook-Levin Theorem
	Slide 4
	Slide 5: Chaining reductions together
	Slide 6: CLIQUE is NP-complete
	Slide 7: Proof that 3‑SAT less than or equal to sub P , CLIQUE
	Slide 8: Reduction from 3‑SAT to CLIQUE
	Slide 9: YES maps to YES
	Slide 10: NO maps to NO
	Slide 11: Poly-time computable
	Slide 12
	Slide 13: The subset sum problem
	Slide 14: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 15: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 16: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 17
	Slide 18: Hamiltonian paths
	Slide 19: DIRECTED‑HAM‑PATH is NP-complete
	Slide 20: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH
	Slide 21: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH
	Slide 22: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH
	Slide 23: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH
	Slide 24: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH
	Slide 25: Proof that 3‑SAT less than or equal to sub P , DIRECTED‑HAM‑PATH

