CMSC 28100

Introduction to Complexity Theory

Spring 2025

Instructor: William Hoza

Homework

- Exercises 1-4 are available in Canvas (due on Tuesday)
- If you aren't officially enrolled, send me an email
- Office hours (Thursday, Friday, Monday) are a good place to find study partners / homework collaborators

Which problems

can be solved

through computation?

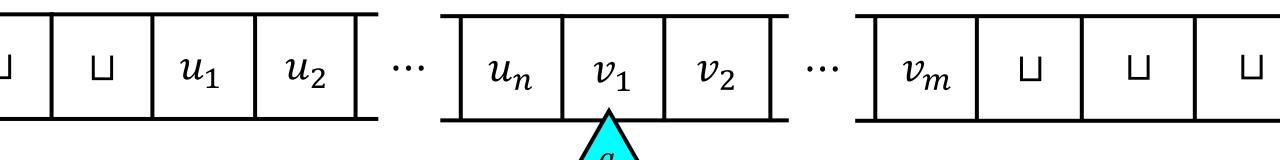
Defining Turing machines rigorously

- **Definition**: A Turing machine is a 7-tuple $M = (Q, q_0, q_{\text{accept}}, q_{\text{reject}}, \Sigma, \sqcup, \delta)$
 - such that
 - *Q* is a finite set (the set of "states")
 - $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q \text{ and } q_{\text{accept}} \neq q_{\text{reject}}$
 - Σ is a finite set of symbols (the "tape alphabet")
 - □ is a symbol (the "blank symbol")
 - $\{0,1,\sqcup\}\subseteq\Sigma$ and $\sqcup\notin\{0,1\}$
 - δ is a function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$ (the "transition function")

♠ Warning: The definition in the textbook is slightly different. Sorry!
(The two models are equivalent.)

Configurations of a Turing machine

- Let $M = (Q, q_0, q_{\text{accept}}, q_{\text{reject}}, \Sigma, \sqcup, \delta)$ be a Turing machine
- A configuration is a triple (u, q, v) where $u \in \Sigma^*$, $q \in Q$, $v \in \Sigma^*$, and $v \neq \epsilon$
- Interpretation:
 - The tape currently contains $\cdots \sqcup \sqcup \sqcup \sqcup \sqcup uv \sqcup \sqcup \sqcup \sqcup \sqcup \cdots$
 - The machine is currently in state q and the head is pointing at the first symbol of v



The initial configuration

- Let $w \in \{0, 1\}^*$ be an input
- The initial configuration of *M* on *w* is

$$\begin{cases} q_0 w & \text{if } w \neq \epsilon \\ q_0 \sqcup & \text{if } w = \epsilon \end{cases}$$

The "next" configuration

- For any configuration uqv, we define NEXT(uqv) as follows:
 - Break uqv into individual symbols: $uqv = u_1u_2 \dots u_{n-1}u_nqv_1v_2v_3 \dots v_m$
 - If $\delta(q, v_1) = (q', b, R)$, then NEXT $(uqv) = u_1u_2 \dots u_{n-1}u_nbq'v_2v_3 \dots v_m$
 - Edge case: If m=1, then $\operatorname{NEXT}(uqv)=u_1u_2\dots u_{n-1}u_nbq'$
 - If $\delta(q, v_1) = (q', b, L)$, then NEXT $(uqv) = u_1u_2 \dots u_{n-1}q'u_nbv_2v_3 \dots v_m$
 - Edge case: If n=0, then $\operatorname{NEXT}(uqv)=q'\sqcup b'v_2v_3\ldots v_m$
- We write $NEXT_M(uqv)$ if M is not clear from context

Halting configurations

- ullet An accepting configuration is a configuration of the form $uq_{
 m accept}v$
- ullet A rejecting configuration is a configuration of the form $uq_{
 m reject}v$
- A halting configuration is an accepting or rejecting configuration

Computation history

- Let $w \in \{0, 1\}^*$ be an input
- Let C_0 be the initial configuration of M on w
- Inductively, for each $i \in \mathbb{N}$, let $C_{i+1} = \text{NEXT}(C_i)$
- The computation history of M on w is the sequence C_0, C_1, \ldots, C_T , where C_T is the first halting configuration in the sequence
- If there is no such C_T , then the computation history is C_0 , C_1 , C_2 , ... (infinite)

Accepting, rejecting, and looping

- If the computation history of M on w ends with an accepting configuration, then we say that M accepts w
- If the computation history of M on w ends with a rejecting configuration, then we say that M rejects w
- In either of those cases, we say that M halts on w. If the computation history of M on w is infinite, then we say that M loops on w

Time

- Suppose the computation history of M on w is C_0 , C_1 , ..., C_T
- We say that T is the running time of M on w
- If M loops on w, then its running time on w is ∞
- We say that M halts on w within T steps if the running time of M
 on w is at most T

Space

- The space used by M on w is the number of cells that are "used"
 - I.e., the head visits the cell OR the cell initially contains an input bit
 - (Can be ∞)

Which of the following statements is **false**?

• Formally, let C_0 , C_1 , ... b

• Write $C_i = (u_i, q_i, v_i)$

A: Space used on w is at most |w| + 1 + running time on w

C: If *M* halts on *w*, then *M* uses a finite amount of space on w

B: If M halts on w within |w| steps, then *M* halts on *ww*

D: If *M* uses a finite amount of space on w, then M halts on w

Respond at PollEv.com/whoza or text "whoza" to 22333

• The space used by M on w is max $|u_iv_i|$

n w

Which problems

can be solved

through computation?

Languages

- A binary language is a set $Y \subseteq \{0, 1\}^*$
- Each language $Y \subseteq \{0,1\}^*$ represents a distinct computational problem: "Given $w \in \{0,1\}^*$, figure out whether $w \in Y$ "

Deciding a language

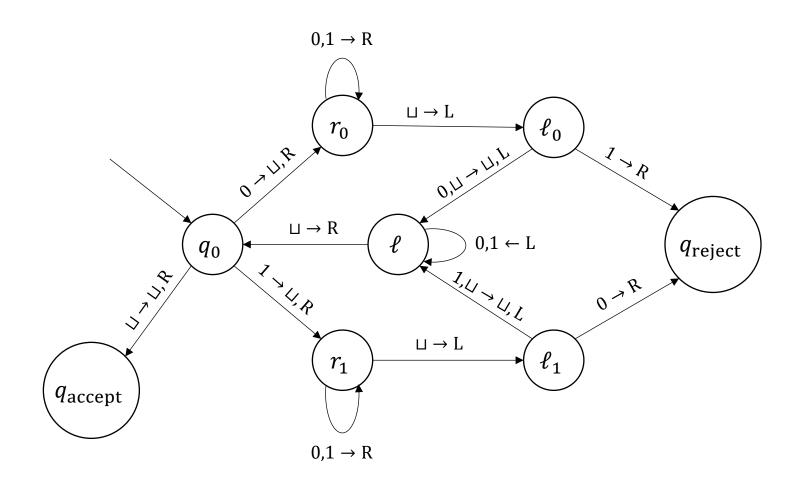
- Let M be a Turing machine and let $Y \subseteq \{0, 1\}^*$
- We say that *M* decides *Y* if
 - M accepts every $w \in Y$, and
 - M rejects every $w \in \{0, 1\}^* \setminus Y$
- This is a mathematical model of what it means to "solve a problem"

Example: Palindromes

- Informal problem statement: "Given $w \in \{0, 1\}^*$, determine whether w is the same forward and backward."
- The same problem, formulated as a language:

PALINDROMES = $\{w \in \{0, 1\}^* : w \text{ is the same forward and backward}\}$

Example: A TM that decides PALINDROMES



Example: Parity

- Informal problem statement: "Given $w \in \{0, 1\}^*$, determine whether the number of ones in w is even or odd."
- The same problem, formulated as a language:

PARITY = $\{w \in \{0, 1\}^* : w \text{ has an odd number of ones}\}$

Example: A TM that decides PARITY

• Let $M = (Q, q_0, h_1, h_0, \Sigma, \sqcup, \delta)$, where $Q = \{q_0, q_1, h_0, h_1\}, \Sigma = \{0, 1, \sqcup\}$, and

$$\delta(q_a, b) = \begin{cases} (q_{a+b}, b, R) & \text{if } b \in \{0, 1\} \\ (h_a, b, R) & \text{if } b = \square \end{cases}$$
 (Addition is mod 2)

- Claim: *M* decides PARITY := $\{w \in \{0, 1\}^* : w \text{ has an odd number of ones}\}$
- **Proof sketch:** Let C_0, C_1, \dots be the computation history of M on $w \in \{0, 1\}^n$
- By induction on i, we have $C_i = w_1 w_2 \dots w_i q_{w_1 + \dots + w_i} w_{i+1} \dots w_n$ for all i < n
- Consequently, $C_n = wq_{w_1+\cdots+w_i} \sqcup \text{and } C_{n+1} = w \sqcup h_{w_1+\cdots+w_n} \sqcup$

Example: Primality testing

- Informal problem statement: "Given $K \in \mathbb{N}$, determine whether K is prime."
- Formulating the problem as a language:
 - Let $\langle K \rangle$ denote the binary encoding of K, i.e., the standard base-2 representation of K
 - Example: $\langle 6 \rangle = 110$. Note that $K \in \mathbb{N}$ whereas $\langle K \rangle \in \{0, 1\}^*$
 - Language:

 $PRIMES = \{\langle K \rangle : K \text{ is a prime number}\}$

Encoding the input as a string

• **OBJECTION:** "The fact that I have to encode the input before feeding it into a Turing machine seems fishy."

"This is not a pipe."
(1929 painting by René Magritte)

- **RESPONSE:** The same is true of human computation!
- We say, "Given a natural number, determine whether it is prime," but is it truly possible to "give" someone an abstract concept such as a number?
- Being pedantic, we could speak more precisely and say, "Given a piece of text, determine whether it represents/encodes a prime number"

Larger alphabets

- **OBJECTION:** "Fine, the input needs to be encoded as a string. But why does it have to be a binary string? What about larger alphabets?"
- **RESPONSE 1:** The Turing machine definition can be modified to handle inputs over other alphabets. We focus on binary inputs for simplicity's sake
- **RESPONSE 2:** We can always encode symbols from other alphabets in binary

Example: ASCII

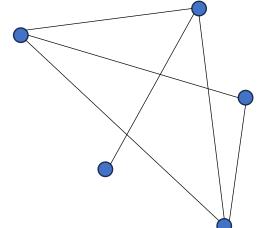
[NUL]	[SOH]	[STX]	[ETX]	[EOT]	[ENQ]	[ACK]	[BEL]	[BS]	[HT]	[LF]	[VT]	[FF]
0000000	0000001	0000010	0000011	0000100	0000101	0000110	0000111	0001000	0001001	0001010	0001011	0001100
[CR]	[SO]	[SI]	[DLE]	[DC1]	[DC2]	[DC3]	[DC4]	[NAK]	[SYN]	[ETB]	[CAN]	[EM]
0001101	0001110	0001111	0010000	0010001	0010010	0010011	0010100	0010101	0010110	0010111	0011000	0011001
[SS]	[ESC]	[FS]	[GS]	[RS]	[US]	[SPACE]	!	II .	#	\$	%	&
0011010	0011011	0011100	0011101	0011110	0011111	0100000	0100001	0100010	0100011	0100100	0100101	0100110
-	()	*	+	,	•	•	/	0	1	2	3
0100111	0101000	0101001	0101010	0101011	0101100	0101101	0101110	0101111	0110000	0110001	0110010	0110011
4	5	6	7	8	9	•	;	<	11	>	?	@
0110100	0110101	0110110	0110111	0111000	0111001	0111010	0111011	0111100	0111101	0111110	0111111	1000000
Α	В	С	D	E	F	G	Н	I	J	K	L	M
1000001	1000010	1000011	1000100	1000101	1000110	1000111	1001000	1001001	1001010	1001011	1001100	1001101
N	0	Р	Q	R	S	T	U	V	W	Х	Υ	Z
1001110	1001111	l										
1001110	1001111	1010000	1010001	1010010	1010011	1010100	1010101	1010110	1010111	1011000	1011001	1011010
[\	1010000]	1010001 ^	1010010	1010011	1010100 a	1010101 b	1010110 c	1010111 d	1011000 e	1011001 f	1011010 g
[1011011	\ 10111100] 1011101		1010010 - 1011111	1010011							
[١]	۸	_	•	а	b	С	d	е	f	g
[1011011	١]	^ 1011110	_	1100000	a 1100001	b 1100010	c 1100011	d 1100100	e 1100101	f 1100110	g 1100111
[1011011 h	\ 1011100 i] 1011101 j	^ 1011110 k	_ 1011111 I	1100000 m	a 1100001 n	b 1100010 o	c 1100011 p	d 1100100 q	e 1100101 r	f 1100110 s	g 1100111 t

Another encoding example: Connectivity

• Informal problem statement: "Given a K-vertex graph G, determine whether it is connected"

- Formulating the problem as a language:
 - Let $\langle G \rangle \in \{0, 1\}^{K^2}$ denote the adjacency matrix of G
 - Language:

CONNECTED = $\{\langle G \rangle : G \text{ is a connected graph}\}$



Multiple possible encodings

- **OBJECTION:** "Why are we using adjacency matrices instead of adjacency lists?"
- **RESPONSE:** It doesn't matter much which encoding we use, because it is not hard to convert between the two encodings

Encoding other things as strings

- General convention: If X is any mathematical object that can be written down (a number, a graph, a polynomial, ...), then we use the notation $\langle X \rangle$ to denote some "reasonable" encoding of X as a binary string
- It typically doesn't matter which specific encoding we use, provided we choose something reasonable
- If you are unsure how $\langle X \rangle$ should be defined in a particular case, ask!

Invalid inputs

• Informal problem statement: "Given a graph G, determine whether it is connected"

• The same problem, formulated as a language:

