CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = { $\langle C \rangle$: *C* is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.

• Proof: Next 8 slides

٦

 χ_1

Proof that CIRCUIT-SAT \in NP

- Given $\langle C \rangle$, where C is an n-input 1-output circuit:
 - 1. Pick $x \in \{0, 1\}^n$ at random
 - 2. Check whether C(x) = 1

(recall CIRCUIT-VALUE \in P)

3. Accept if C(x) = 1; reject if C(x) = 0

Code as data IV

- Let $Y \in NP$
- To prove that CIRCUIT-SAT is NP-hard, we need to prove $Y \leq_P CIRCUIT-SAT$
- Given w ∈ {0, 1}*, we need to construct
 a circuit that is satisfiable if and only if
 w ∈ Y
- Idea: Build a "verification circuit"

"Drawing Hands." (1948 lithograph by M. C. Escher)

Constructing the verification circuit

- Let V be a poly-time verifier for Y, with certificates of length n^k
- Let $w \in \{0, 1\}^n$
- $w \in Y$ if and only if there exists u such that $|u| \leq n^k$ and V accepts $\langle w, u \rangle$
 - Technical detail: Use the encoding $\langle w, u \rangle = 1^{|w|} 0 w u$
- P \subseteq PSIZE, so there is a poly-size circuit C that simulates V on inputs of length $m = 2n + 1 + n^k$

Constructing the verification circuit

$\mathsf{TM}\Rightarrow\mathsf{Circuit}$

Recall proof that

 $P \subseteq PSIZE$

- Insight: The proof is constructive
- We can construct *C* in polynomial time
 - Copy and paste in a

Proof that CIRCUIT-SAT is NP-hard

- Reduction Ψ : Given w, produce $\langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w, u \rangle)$ and C simulates the verifier V
- YES maps to YES:
 - If $w \in Y$, then exists a certificate $u \in \{0, 1\}^{n^k}$ such that V accepts $\langle w, u \rangle$
 - Therefore, $C(\langle w, u \rangle) = 1$
 - Therefore, $C'(\langle u \rangle) = 1$, so C' is satisfiable \checkmark

Proof that CIRCUIT-SAT is NP-hard

- Reduction Ψ : Given w, produce $\langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w, u \rangle)$ and C simulates the verifier V
- NO maps to NO:
 - Suppose C' is satisfiable, i.e., there exists $u \in \{0, 1\}^{n^k}$ such that C'(u) = 1
 - Then $C(\langle w, u \rangle) = 1$
 - Therefore, V accepts $\langle w, u \rangle$, so $w \in Y \checkmark$

Proof that CIRCUIT-SAT is NP-hard

- Reduction Ψ : Given w, produce $\langle C' \rangle$, where $C'(\langle u \rangle) = C(\langle w, u \rangle)$ and C simulates the verifier V
- Time complexity:
 - 1. Compute $\langle C \rangle$ by copying and pasting in a grid
 - This takes poly(m) = poly(n) time \checkmark
 - 2. Plug in $1^n 0w$
 - This takes poly(n) time \checkmark

Theorem: CIRCUIT-SAT is NP-complete.

- Make sure you thoroughly understand this theorem and its proof!
- A ton of key concepts from this course are involved

What else is NP-complete?

- We showed that CIRCUIT-SAT is NP-complete
- This will help us to prove that other problems, such as CLIQUE, are also NP-complete
- Idea: Chain reductions together

Chaining reductions together

 $|w'| \le \operatorname{poly}(|w|)$, so the

time complexity of step 2

is poly(|w|)

- Claim: If $Y_1 \leq_P Y_2 \leq_P Y_3$, then $Y_1 \leq_P Y_3$
- **Proof:** Let $\Psi_{1 \rightarrow 2}$ and $\Psi_{2 \rightarrow 3}$ be the mapping reductions
- Reduction from Y_1 to Y_3 : Given $w \in \{0, 1\}^*$:
 - 1. Run $\Psi_{1 \rightarrow 2}$ on w to compute $w' \in \{0, 1\}^*$
 - 2. Run $\Psi_{2\rightarrow 3}$ on w' to compute $w'' \in \{0, 1\}^*$
 - 3. Output w''

Chaining reductions together

Chaining reductions together

- Let $Y_{\text{OLD}}, Y_{\text{NEW}} \subseteq \{0, 1\}^*$
- Claim: If Y_{OLD} is NP-hard and $Y_{OLD} \leq_P Y_{NEW}$, then Y_{NEW} is NP-hard
- **Proof:** Let $Z \in NP$
- Then $Z \leq_{\mathrm{P}} Y_{\mathrm{OLD}} \leq_{\mathrm{P}} Y_{\mathrm{NEW}}$
- Therefore, $Z \leq_{\mathrm{P}} Y_{\mathrm{NEW}}$

Roadmap

- We will define a language called "3-SAT"
- We will prove CIRCUIT-SAT \leq_P 3-SAT \leq_P CLIQUE
- This will show that CLIQUE is NP-hard

k-CNF formulas

- Recall: A CNF formula is an "AND of ORs of literals"
- **Definition:** A *k*-CNF formula is a CNF formula in which every clause has at most *k* literals
- Example of a 3-CNF formula with two clauses:

$$\phi = (x_1 \lor \bar{x}_2 \lor \bar{x}_6) \land (x_5 \lor x_1 \lor x_2)$$

The Cook-Levin Theorem

• Define k-SAT = { $\langle \phi \rangle : \phi$ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

- **Proof:** We need to show two things.
- 1. We need to show 3-SAT \in NP. What is the certificate?
- 2. We need to show that 3-SAT is NP-hard. Reduction from CIRCUIT-SAT

Reduction step 1: Circuit \rightarrow Instructions

• Return *x*₉

Initial circuit *C*

Reduction step 2: Instructions → Formula

- $x_4 \leftarrow x_1 \wedge x_2$
- $x_5 \leftarrow \neg x_3$
- $x_6 \leftarrow x_4 \wedge x_5$
- $x_7 \leftarrow \neg x_4$
- $x_8 \leftarrow x_7 \land x_3$
- $x_9 \leftarrow x_6 \lor x_8$
- Return x_9

$$(x_4 = x_1 \land x_2)$$

$$\land (x_5 = \neg x_3)$$

$$\land (x_6 = x_4 \land x_5)$$

$$\land (x_7 = \neg x_4)$$

$$\land (x_8 = x_7 \land x_3)$$

$$\land (x_9 = x_6 \lor x_8)$$

$$\land (x_9)$$

A Boolean formula on 9 variables

using operations Λ , V, \neg , and =

Reduction correctness

- Let the gates of C be g_1, \ldots, g_m (topological order)
- Claim: C is satisfiable if and only if ϕ is satisfiable
- **Proof:** (\Rightarrow) Suppose $C(x_1, \dots, x_n) = 1$
- Let $x_{n+i} = g_i(x_1, ..., x_n)$
- Then $\phi(x_1, \dots, x_{n+m}) = 1$

Reduction correctness

- Let the gates of C be g_1, \ldots, g_m (topological order)
- Claim: C is satisfiable if and only if ϕ is satisfiable
- **Proof:** (\Leftarrow) Suppose $\phi(x_1, \dots, x_{n+m}) = 1$
- Then $x_{n+i} = g_i(x_1, ..., x_n)$ for every *i* by induction
- Furthermore, $x_{n+m} = 1$
- Therefore, $C(x_1, \dots, x_n) = 1$

