CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

1

The complexity class PSIZE

- Let $Y \subseteq \{0, 1\}^*$
- By definition, $Y \in \underline{PSIZE}$ if for each n, there exists a poly(n)-size

circuit C_n that decides Y restricted to inputs of length n

- Note: The circuit model is a deterministic model of computation!
- Proof of Adleman's theorem: Next 6 slides

Adleman proof step 1: Amplification

- Let $Y \in BPP$
- By the amplification lemma, there exists a poly-time randomized Turing machine M such that for every $n \in \mathbb{N}$ and every $w \in \{0, 1\}^n$:
 - If $w \in Y$, then $\Pr[M \text{ accepts } w] > 1 1/2^n$
 - If $w \notin Y$, then $\Pr[M \text{ accepts } w] < 1/2^n$

Adleman proof step 2: TM \Rightarrow Circuit

- Let $R = \{\langle w, u \rangle : M \text{ accepts when } w \text{ is on tape 1 and } u \text{ is on tape 2} \}$
 - Technical detail: Use the encoding $\langle w, u \rangle = 1^{|w|} 0 w u$
- Then $R \in P \subseteq PSIZE$
- Therefore, for every $n \in \mathbb{N}$, there exists a poly(n)-size circuit C_n such that for every $w \in \{0, 1\}^n$, if we pick $u \in \{0, 1\}^{n^k}$ at random, then $\Pr[C_n(wu) \neq Y_n(w)] < 1/2^n$

Adleman proof step 3: The union bound

• Key fact from probability theory:

The Union Bound: For any events E_1, E_2, \dots, E_k , we have $Pr[E_1 \text{ or } E_2 \text{ or } \dots \text{ or } E_k] \leq Pr[E_1] + Pr[E_2] + \dots + Pr[E_k]$

• Example: If we pick two cards from a deck, then

Pr[card 1 is a queen or card 2 is a queen] $\leq \frac{1}{13} + \frac{1}{13} = \frac{2}{13}$

Adleman proof step 3: The union bound

Claim: For every *n*, there exists $u_* \in \{0, 1\}^{n^k}$ such that

for all $w \in \{0, 1\}^n$, we have $C_n(wu_*) = Y_n(w)$

The claim follows!

Adleman proof step 4: Hard-coding

- C'_n computes Y_n and it has size poly(n)
- Therefore, $Y \in PSIZE$

Adleman's theorem and P vs. BPP

- Adleman's theorem makes "P = BPP" seem more plausible
- There is also more compelling evidence suggesting P = BPP
 - Beyond the scope of this course

Circuits and NP-completeness

- Why are we studying circuits?
 - It will help us prove that many interesting

problems are NP-complete

- E.g., CLIQUE
- Key idea: Code as Data

Code as data III

- Recall principle: A Turing machine M can be encoded as a string $\langle M \rangle$
 - *M* is an algorithm, but at the same time, $\langle M \rangle$ can be an input to another algorithm!
- Similar idea: A circuit C can be encoded as a string $\langle C \rangle$
 - *C* is an "algorithm," but at the same time, $\langle C \rangle$ can be an input to another algorithm!
 - You'll explore encoding details (Exercise 22)
 - What can we do with this idea?

Circuit value problem

- Let CIRCUIT-VALUE = { $\langle C, x \rangle$: *C* is a circuit and C(x) = 1}
- **Claim:** CIRCUIT-VALUE \in P
- **Proof sketch:** Suppose C has m nodes. To compute C(x):
 - 1) Mark all the input nodes with their values
 - 2) While there is an unmarked node:
 - a) For every gate g, find all the nodes that feed into g. If they are all marked with their values, then mark g with its value

Circuit satisfiability

- Let *C* be an *n*-input 1-output circuit
- We say that *C* is satisfiable if there exists

 $x \in \{0, 1\}^n$ such that C(x) = 1

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = { $\langle C \rangle$: *C* is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.

• Proof: Next 8 slides

Proof that CIRCUIT-SAT \in NP

- Given $\langle C \rangle$, where C is an n-input 1-output circuit:
 - 1. Pick $x \in \{0, 1\}^n$ at random
 - 2. Check whether C(x) = 1

(recall CIRCUIT-VALUE \in P)

3. Accept if C(x) = 1; reject if C(x) = 0

Code as data IV

- Let $Y \in NP$
- To prove that CIRCUIT-SAT is NP-hard, we need to prove $Y \leq_P CIRCUIT-SAT$
- Given w ∈ {0, 1}*, we need to construct
 a circuit that is satisfiable if and only if
 w ∈ Y
- Idea: Build a "verification circuit"

"Drawing Hands." (1948 lithograph by M. C. Escher)

Constructing the verification circuit

- Let V be a poly-time verifier for Y, with certificates of length n^k
- Let $w \in \{0, 1\}^n$
- $w \in Y$ if and only if there exists u such that $|u| \leq n^k$ and V accepts $\langle w, u \rangle$
 - Technical detail: Use the encoding $\langle w, u \rangle = 1^{|w|} 0wu$
- P \subseteq PSIZE, so there is a poly-size circuit C that simulates V on inputs of length $m = 2n + 1 + n^k$

Constructing the verification circuit

