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The complexity class PSIZE

I"\

* By definition, Y € PSIZE if for each n, there exists a poly(n)-size

. LetY € {0, 1}*

circuit C,, that decides Y restricted to inputs of length n



PSIZE

Adleman’s theorem

BPP

Tantalizingly similar

e Last class: P € PSIZE to “P = BPP”

* Next, we will prove a stronger theorem: O

Adleman’s Theorem: BPP € PSIZE

* Note: The circuit model is a deterministic model of computation!

* Proof of Adleman’s theorem: Next 6 slides



Adleman proof step 1: Amplification Y

* LetY € BPP

* By the amplification lemma, there exists a poly-time randomized
Turing machine M such that for every n € N and every w € {0, 1}":

* Ifw €Y, then Pr[M acceptsw] > 1 —1/2"

e Ifw &Y, then Pr[M accepts w| < 1/2"



Adleman proof step 2: TM = Circuit $s

e Let R = {{(w, u) : M accepts when w is on tape 1 and u is on tape 2}

e Technical detail: Use the encoding (w, u) = 1¥l0wu
e Then R € P € PSIZE

* Therefore, for every n € N, there exists a C,

poly(n)-size circuit C,, such that for every

RS
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w € {0,1}", if we pick u € {0,1}"* at L1 0 wfw,u)

random, then Pr[C,,(wu) # Y, (w)] < 1/2"



Adleman proof step 3: The union bound

» Key fact from probability theory:

The Union Bound: For any events £, E,, ..., E}, we have

Pr[E; or E, or...or E;| < Pr[E;] + Pr[E,] + :-- + Pr[E}]

* Example: If we pick two cards from a deck, then

: : 1 1 2
Pr|card 1 is a queen or card 2 is a queen] < = + — ==



Adleman proof step 3: The union bound

: . k
Claim: For every n, there exists u, € {0, 1}" such that

for allw € {0, 1}", we have C,,(wu,) = Y, (w)

* Proof: Pick u € {0, 1}"k uniformly at random. Then

there exists w € {0,1}"

Pr such that C,,(wu) # Y,,(w)

we{0,1}

* The claim follows!

]s Z PL[C, (W) £ Y, (w)] < 27 - —

ZTl

Union Bound

=1




Adleman proof step 4: Hard-coding

| Cn
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— 4
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u, “hard-coded” into circuit

 C;, computes Y,, and it has size poly(n)

 Therefore, Y € PSIZE



Adleman’s theorem and P vs. BPP

* Adleman’s theorem makes “P = BPP” seem more plausible

* There is also more compelling evidence suggesting P = BPP

* Beyond the scope of this course



Circuits and NP-completeness

* Why are we studying circuits?

* It will help us prove that many interesting

problems are NP-complete

e E.g., CLIQUE

* Key idea: Code as Data

NP-hard

NP-complete
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Code as data 111

 Recall principle: A Turing machine M can be encoded as a string (M)

* M is an algorithm, but at the same time, (M) can be an input to another algorithm!

 Similar idea: A circuit C can be encoded as a string (C)
* Cis an “algorithm,” but at the same time, (C) can be an input to another algorithm!
* You'll explore encoding details (Exercise 22)

 What can we do with this idea?
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Circuit value problem

e Let CIRCUIT-VALUE = {{C, x) : Cisacircuitand C(x) = 1}
* Claim: CIRCUIT-VALUE € P

* Proof sketch: Suppose C has m nodes. To compute C(x):

1) Mark all the input nodes with their values

2) While there is an unmarked node:

a) For every gate g, find all the nodes that feed into g. If they are all marked with their

values, then mark g with its value
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Circuit satisfiability

e Let C be an n-input 1-output circuit

 We say that C is satisfiable if there exists
x € {0,1}" suchthat C(x) =1

Satisfiable «

Unsatisfiable ¢
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Circuit satisfiability is NP-complete

e Let CIRCUIT-SAT = {(C) : C is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.

 Proof: Next 8 slides
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Proof that CIRCUIT-SAT € NP

(1)

* Given (C), where C is an n-input 1-output circuit:
1. Pickx € {0,1}" at random
2. Check whether C(x) =1 (recall CIRCUIT-VALUE € P)

3. Acceptif C(x) = 1;rejectif C(x) =0
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Code as data lV

*LetY € NP

* To prove that CIRCUIT-SAT is NP-hard,
we need to prove Y <p CIRCUIT-SAT

* Given w € {0, 1}*, we need to construct
a circuit that is satisfiable if and only if

weyY

* |dea: Build a “verification circuit”

“Drawing Hands.”
(1948 lithograph by M. C. Escher)
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Constructing the verification circuit

* Let V be a poly-time verifier for Y, with certificates of length n”

e Letw € {0, 1}"

e w € Y if and only if there exists u such that |u| < n’ and V accepts (w, u)
« Technical detail: Use the encoding (w, u) = 11¥l0owu

P € PSIZE, so there is a poly-size circuit C that simulates IV on inputs of

lengthm = 2n+ 1 +n~

17



Constructing the verification circuit

1 1 0 01 I w uy ug Upk

|
1
—

10w “hard-coded” into circuit

construct C in
poly time?

>

* Reduction W: Given w, produce (C’), where C'(u) = C({w,u))

e w € Y if and only if the uchthat C({w,u)) =1

18



	Slide 1: CMSC 28100  Introduction to Complexity Theory  Spring 2025 Instructor: William Hoza
	Slide 2: The complexity class PSIZE
	Slide 3: Adleman’s theorem
	Slide 4: Adleman proof step 1: Amplification
	Slide 5: Adleman proof step 2: TM implies Circuit
	Slide 6: Adleman proof step 3: The union bound
	Slide 7: Adleman proof step 3: The union bound
	Slide 8: Adleman proof step 4: Hard-coding
	Slide 9: Adleman’s theorem and P vs. BPP
	Slide 10: Circuits and NP-completeness
	Slide 11: Code as data III
	Slide 12: Circuit value problem
	Slide 13: Circuit satisfiability
	Slide 14: Circuit satisfiability is NP-complete
	Slide 15: Proof that CIRCUIT‑SAT element of NP
	Slide 16: Code as data IV
	Slide 17: Constructing the verification circuit
	Slide 18: Constructing the verification circuit

