CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need new conceptual tools

Guessing and checking

- **Key insight:** There exists a polynomial-time randomized Turing machine *M* with the following properties.
 - If $\langle G, k \rangle \notin \text{CLIQUE}$, then $\Pr[M \text{ accepts } \langle G, k \rangle] = 0$.
 - If $\langle G, k \rangle \in \text{CLIQUE}$, then $\Pr[M \text{ accepts } \langle G, k \rangle] \neq 0$.

"Nondeterministic TM"

• **Proof:** *M* picks a random subset of the vertices, accepts if it is a *k*-clique, and rejects otherwise.

The complexity class NP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in \mathbb{NP}$ if there exists a randomized polynomial-time

Turing machine M such that for every $w \in \{0, 1\}^*$:

- If $w \in Y$, then $\Pr[M \text{ accepts } w] \neq 0$
- If $w \notin Y$, then $\Pr[M \text{ accepts } w] = 0$
- "<u>N</u>ondeterministic <u>P</u>olynomial-time"

Another example of a language in NP

- FACTOR = { $\langle K, M \rangle$: *K* has a prime factor $p \le M$ }
- **Claim:** FACTOR \in NP
- Proof:
 - 1. Pick $R \in \{2, 3, 4, ..., M\}$ uniformly at random
 - 2. Check whether K/R is an integer (long division)
 - 3. If it is, accept; if it isn't, reject

How to interpret NP

- NP is not intended to model the concept of tractability
- A nondeterministic polynomial-time algorithm is not a practical way to solve a problem
- Instead, NP is a conceptual tool for reasoning about computation

"Verification of certificates" perspective

- Let $Y \subseteq \{0,1\}^*$
- Claim: $Y \in NP$ iff there exists $k \in \mathbb{N}$ and a deterministic poly-time TM V such that: "Certificate" / "Witness"
 - For every $w \in Y$, there exists x such that $|x| \leq |w|^k$ and V accepts $\langle w, x \rangle$
 - For every $w \notin Y$, for every x, the machine V rejects $\langle w, x \rangle$
- **Proof:** (\Rightarrow) Given $\langle w, x \rangle$, V simulates M with w on tape 1 and x on tape 2
- (\Leftarrow) Pick x at random and simulate V on $\langle w, x \rangle$

The P vs. NP problem

- $P \subseteq NP$ (why?)
- Open question: Does P = NP?
- Let $Y \in NP$
- What can we do if we want to decide *Y* deterministically?

Solving problems in NP by brute force

- **Claim:** NP \subseteq PSPACE
- **Proof:** Let *M* be a time- n^k nondeterministic TM. Given $w \in \{0, 1\}^n$:
 - 1. For every $x \in \{0, 1\}^{n^k}$, simulate M, initialized with w on tape 1 and x on tape 2
 - 2. If we find some x such that M accepts, accept. Otherwise, reject
- NP can be informally defined as "the set of problems that can be solved by brute-force search"

P vs. NP vs. PSPACE vs. EXP

- $P \subseteq NP \subseteq PSPACE \subseteq EXP$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict. (Why?)

NP P

- "P = NP" would mean:
 - Brute-force search algorithms can always be converted into poly-time algorithms
 - Verifying someone else's solution is never significantly easier than solving a problem from scratch
- This would be counterintuitive!

The P vs. NP problem

Conjecture: $P \neq NP$

Comparing NP and BPP

- Conjecture: $P \neq NP$
 - It's hard to find a needle in a haystack
- Conjecture: P = BPP
 - It's easy to find hay in a haystack!

The P vs. NP problem

- P vs. NP is one of the most important open questions in theoretical computer science and mathematics
- The Clay Mathematics Institute will give you \$1 million if you prove $P \neq NP$ (or if you prove P = NP)

Complexity of CLIQUE

- Recall: CLIQUE = { $\langle G, k \rangle$: G has a k-clique}
- Previously discussed: $CLIQUE \in NP$
- Consequence: If P = NP, then $CLIQUE \in P$
- **Plan:** We will prove that if $P \neq NP$, then CLIQUE $\notin P$
 - This will provide evidence that CLIQUE ∉ P
- To prove it, we will use concepts of NP-hardness and NP-completeness

NP-hardness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is "NP-hard" if, for every $L \in NP$, we have
 - $L \leq_{\mathrm{P}} Y$
- Interpretation:
 - Y is at least as hard as any language in NP
 - Every problem in NP is basically a special case of Y

NP-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is NP-complete if Y is NP-hard and $Y \in NP$
- The NP-complete languages are the hardest languages in NP
- If *Y* is NP-complete, then the language *Y* can be said to "capture" / "express" the entire complexity class NP
- Example: We will eventually prove that CLIQUE is NP-complete

NP-complete languages are probably not in P

- Let *Y* be an NP-complete language
- Claim: $Y \in P$ if and only if P = NP
- Proof:
 - (\Leftarrow) This holds because $Y \in NP \checkmark$
 - (\Rightarrow) This holds because Y is NP-hard \checkmark

NP-completeness

Proving NP-completeness

- How can we prove that a language like CLIQUE is NP-complete?
- How can we use graph theory to simulate Turing machines?
- Plan:

Turing Machines \Rightarrow Logic Gates \Rightarrow Graph Theory

Logic gates

- AND: $a \wedge b$
- OR: *a* ∨ *b*
- NOT: ¬*a*

- - Each internal node is labeled ∨ or ∨ (two children) or ¬ (one child)
 - Each leaf is labeled with 0, 1, or a variable among x_1, \ldots, x_n
- It computes $f: \{0, 1\}^n \rightarrow \{0, 1\}$
- E.g., $f(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \land \bar{x}_3)$
 - Notation: \bar{x}_i is another way of writing $\neg x_i$

Boolean circuits

• A Boolean circuit is like a Boolean

formula, except that we permit vertices

to have multiple outgoing wires

Boolean circuits: Rigorous definition

- **Definition:** An *n*-input *m*-output circuit is a directed acyclic graph
 - We refer to the edges as "wires"
 - Each node is labeled with one of the following:
 - A or V (two incoming wires)
 ¬ (one incoming wire)

 - 0, 1, or a variable among x_1, \ldots, x_n (zero incoming wires)
 - m of the nodes are additionally labeled as "output 1", "output 2", ..., "output m"

Boolean circuits: Rigorous definition

- Each node g computes a function $g: \{0, 1\}^n \rightarrow \{0, 1\}$ defined inductively:
 - If g is labeled x_i , then g(x) = the *i*-th bit of x
 - If g is labeled \neg and its incoming wire comes from f, then $g(x) = \neg f(x)$
 - If g is labeled \wedge and its incoming wires come from f and h, then $g(x) = f(x) \wedge h(x)$
 - If g is labeled V and its incoming wires come from f and h, then $g(x) = f(x) \vee h(x)$

Boolean circuits

- Let the output nodes be g_1,\ldots,g_m
- As a whole, the circuit computes $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$ defined by

$$C(x) = (g_1(x), \dots, g_m(x))$$

Circuit complexity

- The size of the circuit is the total number of AND/OR/NOT gates
 - How much "work" does the circuit do?
- Let $f: \{0,1\}^n \to \{0,1\}^m$
- The circuit complexity of *f* is the size of the smallest circuit that computes *f*
 - How much work is required to compute *f*?

Circuit complexity example 1

- Let $f(x) = x_1 \vee x_2 \vee \cdots \vee x_n$
- Circuit complexity: $\Theta(n)$

Circuit complexity example 2

• Let $f(x) = x_1 \oplus x_2 \oplus \dots \oplus x_n$

