
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

2

P

EXP

EXP-complete

EXP-hard

CLIQUE seems
to be here

CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need

new conceptual tools

3

Guessing and checking

• Key insight: There exists a polynomial-time randomized Turing machine

𝑀 with the following properties.

• If 𝐺, 𝑘 ∉ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 = 0.

• If 𝐺, 𝑘 ∈ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 ≠ 0.

• Proof: 𝑀 picks a random subset of the vertices, accepts if it is a 𝑘-clique,

and rejects otherwise.

4

“Nondeterministic TM”

The complexity class NP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”

5

Another example of a language in NP

• FACTOR = 𝐾, 𝑀 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑀

• Claim: FACTOR ∈ NP

• Proof:

1. Pick 𝑅 ∈ 2, 3, 4, … , 𝑀 uniformly at random

2. Check whether 𝐾/𝑅 is an integer (long division)

3. If it is, accept; if it isn’t, reject

6

How to interpret NP

• NP is not intended to model the concept of tractability

• A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

• Instead, NP is a conceptual tool for reasoning about computation

7

“Verification of certificates” perspective

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: 𝑌 ∈ NP iff there exists 𝑘 ∈ ℕ and a deterministic poly-time TM 𝑉 such

that:

• For every 𝑤 ∈ 𝑌, there exists 𝑥 such that 𝑥 ≤ 𝑤 𝑘 and 𝑉 accepts 𝑤, 𝑥

• For every 𝑤 ∉ 𝑌, for every 𝑥, the machine 𝑉 rejects 𝑤, 𝑥

• Proof: (⇒) Given 𝑤, 𝑥 , 𝑉 simulates 𝑀 with 𝑤 on tape 1 and 𝑥 on tape 2

• (⇐) Pick 𝑥 at random and simulate 𝑉 on 𝑤, 𝑥
8

“Verifier”

“Certificate” / “Witness”

The P vs. NP problem

• P ⊆ NP (why?)

• Open question: Does P = NP?

• Let 𝑌 ∈ NP

• What can we do if we want to decide 𝑌 deterministically?

9

P

NP

Solving problems in NP by brute force

• Claim: NP ⊆ PSPACE

• Proof: Let 𝑀 be a time-𝑛𝑘 nondeterministic TM. Given 𝑤 ∈ 0, 1 𝑛:

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
, simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

2. If we find some 𝑥 such that 𝑀 accepts, accept. Otherwise, reject

• NP can be informally defined as “the set of problems that can be solved by

brute-force search”

10

11

P

PSPACE

EXP

NP

P vs. NP vs. PSPACE vs. EXP

• P ⊆ NP ⊆ PSPACE ⊆ EXP

• What we expect: All of these containments are strict

• What we can prove: At least one of these containments is strict. (Why?)

12

The P vs. NP problem

• “P = NP” would mean:

• Brute-force search algorithms can always be converted into poly-time algorithms

• Verifying someone else’s solution is never significantly easier than solving a problem

from scratch

• This would be counterintuitive!

13

Conjecture: P ≠ NP

P

NP

Comparing NP and BPP

• Conjecture: P ≠ NP

• It’s hard to find a needle in a haystack

• Conjecture: P = BPP

• It’s easy to find hay in a haystack!

14

The P vs. NP problem

• P vs. NP is one of the most important open questions in theoretical

computer science and mathematics

• The Clay Mathematics Institute will give you $1 million

if you prove P ≠ NP (or if you prove P = NP)

15

Complexity of CLIQUE

• Recall: CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Previously discussed: CLIQUE ∈ NP

• Consequence: If P = NP, then CLIQUE ∈ P

• Plan: We will prove that if P ≠ NP, then CLIQUE ∉ P

• This will provide evidence that CLIQUE ∉ P

• To prove it, we will use concepts of NP-hardness and NP-completeness

16

NP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say that 𝑌 is “NP-hard” if, for every 𝐿 ∈ NP, we have

𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in NP

• Every problem in NP is basically a special case of 𝑌

17

NP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say that 𝑌 is NP-complete if 𝑌 is NP-hard and 𝑌 ∈ NP

• The NP-complete languages are the hardest languages in NP

• If 𝑌 is NP-complete, then the language 𝑌 can be said to “capture” /

“express” the entire complexity class NP

• Example: We will eventually prove that CLIQUE is NP-complete

18

NP-complete languages are probably not in P

• Let 𝑌 be an NP-complete language

• Claim: 𝑌 ∈ P if and only if P = NP

• Proof:

• ⇐ This holds because 𝑌 ∈ NP

• ⇒ This holds because 𝑌 is NP-hard

19

NP-completeness

20

P

NP

NP-complete

NP-hard

Proving NP-completeness

• How can we prove that a language like CLIQUE is NP-complete?

• How can we use graph theory to simulate Turing machines?

• Plan:

Turing Machines ⇒ Logic Gates ⇒ Graph Theory

21

Logic gates

• AND: 𝑎 ∧ 𝑏

• OR: 𝑎 ∨ 𝑏

• NOT: ¬𝑎

22

Boolean formulas

• Definition: An 𝑛-variate Boolean formula is a rooted tree

• Each internal node is labeled ∨ or ∨ (two children) or ¬ (one child)

• Each leaf is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• It computes 𝑓: 0, 1 𝑛 → 0, 1

• E.g., 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1 ∧ 𝑥2 ∨ 𝑥1 ∧ ҧ𝑥3

• Notation: ҧ𝑥𝑖 is another way of writing ¬𝑥𝑖

23

Compare to
arithmetic formulas

∨

∧

𝑥3

𝑥1

∧

𝑥1 𝑥2 ¬

Boolean circuits

• A Boolean circuit is like a Boolean

formula, except that we permit vertices

to have multiple outgoing wires

24

0 1 1 1

1 0

0

0

1

1 1

1 1

10 0

0 1 0 0

0

01

1

10

01

1

∨

∧ ∧

∨ ∨

∧ ∧ ∧ ∧

¬ ¬ ¬ ¬

¬ ¬

𝑥1 𝑥2 𝑥3 𝑥4

Boolean circuits: Rigorous definition

• Definition: An 𝑛-input 𝑚-output circuit is a directed acyclic graph

• We refer to the edges as “wires”

• Each node is labeled with one of the following:

• ∧ or ∨ (two incoming wires)

• ¬ (one incoming wire)

• 0, 1, or a variable among 𝑥1, … , 𝑥𝑛 (zero incoming wires)

• 𝑚 of the nodes are additionally labeled as “output 1”, “output 2”, …, “output 𝑚”

25

“gates”

Boolean circuits: Rigorous definition

• Each node 𝑔 computes a function 𝑔: {0, 1}𝑛 → {0, 1} defined inductively:

• If 𝑔 is labeled 𝑥𝑖, then 𝑔 𝑥 = the 𝑖-th bit of 𝑥

• If 𝑔 is labeled ¬ and its incoming wire comes from 𝑓, then 𝑔 𝑥 = ¬𝑓 𝑥

• If 𝑔 is labeled ∧ and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥 ∧ ℎ 𝑥

• If 𝑔 is labeled ∨ and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥 ∨ ℎ 𝑥

26

Boolean circuits

• Let the output nodes be 𝑔1, … , 𝑔𝑚

• As a whole, the circuit computes 𝐶: 0, 1 𝑛 → 0, 1 𝑚 defined by

𝐶 𝑥 = 𝑔1 𝑥 , … , 𝑔𝑚 𝑥

27

Circuit complexity

• The size of the circuit is the total number of AND/OR/NOT gates

• How much “work” does the circuit do?

• Let 𝑓: {0, 1}𝑛 → {0, 1}𝑚

• The circuit complexity of 𝑓 is the size of the smallest circuit that

computes 𝑓

• How much work is required to compute 𝑓?

28

∨

∧ ∧

¬ ¬

𝑥1 𝑥2

Circuit complexity example 1

• Let 𝑓 𝑥 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛

• Circuit complexity: Θ 𝑛

29

∨

∨ ∨

∨ ∨

𝑥1 𝑥2 𝑥7 𝑥8

∨∨

𝑥3 𝑥4 𝑥5 𝑥6

Circuit complexity example 2

• Let 𝑓 𝑥 = 𝑥1 ⊕ 𝑥2 ⊕ ⋯ ⊕ 𝑥𝑛

30

What is the circuit complexity of 𝑓?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: 𝑂 1A: Θ 𝑛2

D: Θ 2𝑛C: Θ 𝑛

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2
	Slide 3: Complexity of the clique problem
	Slide 4: Guessing and checking
	Slide 5: The complexity class NP
	Slide 6: Another example of a language in NP
	Slide 7: How to interpret NP
	Slide 8: “Verification of certificates” perspective
	Slide 9: The P vs. NP problem
	Slide 10: Solving problems in NP by brute force
	Slide 11
	Slide 12: P vs. NP vs. PSPACE vs. EXP
	Slide 13: The P vs. NP problem
	Slide 14: Comparing NP and BPP
	Slide 15: The P vs. NP problem
	Slide 16: Complexity of CLIQUE
	Slide 17: NP-hardness
	Slide 18: NP-completeness
	Slide 19: NP-complete languages are probably not in P
	Slide 20: NP-completeness
	Slide 21: Proving NP-completeness
	Slide 22: Logic gates
	Slide 23: Boolean formulas
	Slide 24: Boolean circuits
	Slide 25: Boolean circuits: Rigorous definition
	Slide 26: Boolean circuits: Rigorous definition
	Slide 27: Boolean circuits
	Slide 28: Circuit complexity
	Slide 29: Circuit complexity example 1
	Slide 30: Circuit complexity example 2

