CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

CLIQUE = {{(G, k) : G has a k-clique}

EXP-hard

EXP-complete
CLIQUE seems

to be here

Complexity of the clique problem

* Evidently, to understand the complexity of CLIQUE, we need

new conceptual tools

Guessing and checking

* Key insight: There exists a polynomial-time randomized Turing machine
M with the following properties.

* If (G, k) ¢ CLIQUE, then Pr[M accepts (G, k)] = 0.

> “Nondeterministic TM”

 If (G, k) € CLIQUE, then Pr|M accepts (G, k)] + 0.

4

* Proof: M picks a random subset of the vertices, accepts if it is a k-clique,

and rejects otherwise.

The complexity class NP

e letY € {0,1}"

* Definition: Y € NP if there exists a randomized polynomial-time
Turing machine M such that for every w € {0, 1}":

* Ifw €Y, then Pr[M accepts w] # 0

* Ifw ¢ Y, then Pr[M accepts w] = 0

* “Nondeterministic Polynomial-time”

Another example of a language in NP

 FACTOR = {(K, M) : K has a prime factor p < M}
* Claim: FACTOR € NP

* Proof:
1. PickR € {2,3,4,..., M} uniformly at random
2. Check whether K/R is an integer (long division)

3. Ifitis, accept; if itisn’t, reject

How to interpret NP

* NP is not intended to model the concept of tractability

* A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

* Instead, NP is a conceptual tool for reasoning about computation

: - =7
T

* Claim: Y € NP iff there exists k € N and a deterministic poly-time TM V such

that' K[“Certificate” / “Witness” J

e For every w € Y, there exists x such that |x| < |[w|* and V accepts (w, x)

* Foreveryw & Y, for every x, the machine V rejects (w, x)

* Proof: (=) Given (w, x), VV simulates M with w on tape 1 and x on tape 2

* (<) Pick x at random and simulate V on (w, x)

The P vs. NP problem

e P € NP (why?)
* Open question: Does P = NP?
e letY € NP

* What can we do if we want to decide Y deterministically?

NP

Solving problems in NP by brute force

* Claim: NP € PSPACE

* Proof: Let M be a time-n’ nondeterministic TM. Given w € {0, 1}™*:

1. Forevery x € {0, 1}"k, simulate M, initialized with w on tape 1 and x on tape 2

2. If we find some x such that M accepts, accept. Otherwise, reject

* NP can be informally defined as “the set of problems that can be solved by

brute-force search”

10

EXP

PSPACE

11

P vs. NP vs. PSPACE vs. EXP

« P € NP € PSPACE <€ EXP
 What we expect: All of these containments are strict

* What we can prove: At least one of these containments is strict. (Why?)

12

NP

The P vs. NP problem

e “P = NP” would mean:

* Brute-force search algorithms can always be converted into poly-time algorithms

* Verifying someone else’s solution is never significantly easier than solving a problem

from scratch

 This would be counterintuitive!

Conjecture: P # NP

13

Comparing NP and BPP

* Conjecture: P # NP

* It’s hard to find a needle in a haystack

* Conjecture: P = BPP

* It’s easy to find hay in a haystack!

14

The P vs. NP problem

 Pvs. NP is one of the most important open questions in theoretical

computer science and mathematics

* The Clay Mathematics Institute will give you S1 million

if you prove P = NP (or if you prove P = NP)

15

Complexity of CLIQUE

* Recall: CLIQUE = {(G, k) : G has a k-clique}
* Previously discussed: CLIQUE € NP
* Consequence: If P = NP, then CLIQUE € P

* Plan: We will prove that if P = NP, then CLIQUE & P

* This will provide evidence that CLIQUE & P

* To prove it, we will use concepts of NP-hardness and NP-completeness

16

NP-hardness

e letY € {0,1}
* Definition: We say that Y is “NP-hard” if, for every L € NP, we have
L<p?Y

* Interpretation:
* Y is at least as hard as any language in NP

* Every problem in NP is basically a special case of Y

17

NP-completeness

e letY € {0,1}
* Definition: We say that Y is NP-complete if Y is NP-hard and Y € NP
* The NP-complete languages are the hardest languages in NP

* If Y is NP-complete, then the language Y can be said to “capture” /

“express” the entire complexity class NP

* Example: We will eventually prove that CLIQUE is NP-complete

18

NP-complete languages are probably notin P

* Let Y be an NP-complete language
e Claim:Y € Pifand only if P = NP

* Proof:

* (&) This holds because Y € NP «
* (=) This holds because Y is NP-hard «

19

NP-completeness

NP-hard

NP-complete

20

Proving NP-completeness

* How can we prove that a language like CLIQUE is NP-complete?
* How can we use graph theory to simulate Turing machines?

e Plan:

Turing Machines = Logic Gates = Graph Theory

21

Logic gates

e AND:a A Db
e OR:a Vb

* NOT: na

22

Compare to
arithmetic formulas

Boolean formulas

e,

O
* Definition: An n-variate Boolean formula is a rooted tree

* Each internal node is labeled V or V (two children) or = (one child)

* Each leaf is labeled with 0, 1, or a variable among x4, ..., X, °

* It computes f:{0,1}" - {0, 1} ° ”
* E.g., f(x1,%2,%3) = (X1 Axz) V (X1 A X3) @ @ Q Q

* Notation: X; is another way of writing —x; G

23

Boolean circuits

* A Boolean circuit is like a Boolean
formula, except that we permit vertices

to have multiple outgoing wires

24

Boolean circuits: Rigorous definition

* Definition: An n-input m-output circuit is a directed acyclic graph
* We refer to the edges as “wires”

* Each node is labeled with one of the following:

 AorV (two incoming wires)
((gatesﬂ

* — (oneincoming wire)

* 0, 1, or avariable among x4, ..., x,, (zero incoming wires)

/(]

 m of the nodes are additionally labeled as “output 1”, “output 27, ..., “output m”

25

Boolean circuits: Rigorous definition

* Each node g computes a function g: {0, 1} — {0, 1} defined inductively:
* If g is labeled x;, then g(x) = the i-th bit of x
* If g is labeled — and its incoming wire comes from f, then g(x) = —=f(x)
* If g is labeled A and its incoming wires come from f and h, then g(x) = f(x) A h(x)

* If g is labeled Vv and its incoming wires come from f and h, then g(x) = f(x) V h(x)

26

Boolean circuits

* Let the output nodes be g4, ..., gm

 As a whole, the circuit computes C: {0, 1} — {0, 1}’ defined by

C(x) = (91(), e, G (x))

27

Circuit complexity I:’c:\

* The size of the circuit is the total number of AND/OR/NOT gates

e How much “work” does the circuit do?
e Let f:{0,1}" - {0,1}"™

* The circuit complexity of f is the size of the smallest circuit that

computes f

* How much work is required to compute f?

28

Circuit complexity example 1

elet f(x) =x; VX,V Vi,

e Circuit complexity: ©(n)

29

Circuit complexity example 2

cletf(x) =x, Dx, DD x,

< What is the circuit complexity of f?

< A: 0(n?) >< B: 0(1)

< C: 0(n) >< D: ©(2M)

V'V V

Respond at PollEv.com/whoza or text “whoza” to 22333

30

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2
	Slide 3: Complexity of the clique problem
	Slide 4: Guessing and checking
	Slide 5: The complexity class NP
	Slide 6: Another example of a language in NP
	Slide 7: How to interpret NP
	Slide 8: “Verification of certificates” perspective
	Slide 9: The P vs. NP problem
	Slide 10: Solving problems in NP by brute force
	Slide 11
	Slide 12: P vs. NP vs. PSPACE vs. EXP
	Slide 13: The P vs. NP problem
	Slide 14: Comparing NP and BPP
	Slide 15: The P vs. NP problem
	Slide 16: Complexity of CLIQUE
	Slide 17: NP-hardness
	Slide 18: NP-completeness
	Slide 19: NP-complete languages are probably not in P
	Slide 20: NP-completeness
	Slide 21: Proving NP-completeness
	Slide 22: Logic gates
	Slide 23: Boolean formulas
	Slide 24: Boolean circuits
	Slide 25: Boolean circuits: Rigorous definition
	Slide 26: Boolean circuits: Rigorous definition
	Slide 27: Boolean circuits
	Slide 28: Circuit complexity
	Slide 29: Circuit complexity example 1
	Slide 30: Circuit complexity example 2

