CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Which problems

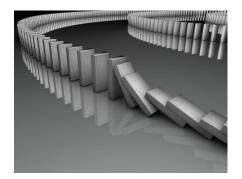
can be solved

through computation?

Which languages are in P?

Which languages are not in P?

The bounded halting problem



- BOUNDED-HALT = { $\langle M, w, T \rangle$: *M* halts on *w* within *T* steps}
- BOUNDED-HALT \in EXP

Theorem: BOUNDED-HALT ∉ P

- Proof strategy: We'll show that if BOUNDED-HALT were in P, then
 - it would follow that P = EXP

Proof that BOUNDED-HALT \notin P

- Assume B is a poly-time TM deciding BOUNDED-HALT
- Let $Y \in \text{EXP}$. There is a TM M that $\begin{cases} \text{accepts } w \text{ within } 2^{|w|^k} \text{ steps } & \text{if } w \in Y \\ \text{loops} & \text{if } w \notin Y \end{cases}$
- We will construct a poly-time TM R that decides Y

```
Given w \in \{0, 1\}^*:
```

- 1. Simulate *B* on $\langle M, w, 2^{|w|^k} \rangle$
- 2. If *B* accepts, accept. If *B* rejects, reject.

- Polynomial time
- If $w \in Y$, then M accepts w within $2^{|w|^k}$ steps, so R accepts $w \checkmark$
- If w ∉ Y, then M loops on w, so R
 rejects w ✓

Beyond "it's not in P"

- We proved BOUNDED-HALT \notin P
- Insight: The proof gives us bonus information
 - "How far outside P is it?"
 - "Why is it outside P? What kind of hardness does it have?"
- The proof shows that every language in EXP reduces to BOUNDED-HALT
- Furthermore, the reduction has a very specific structure

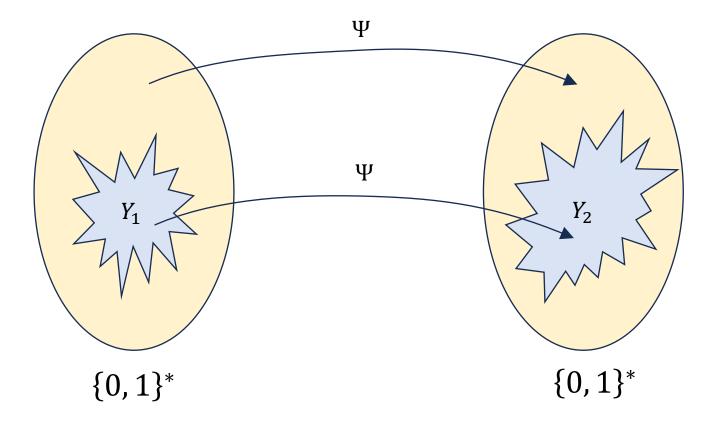
Mapping reductions

- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- **Definition:** We say that Y_1 is poly-time mapping reducible to Y_2 if there exists a poly-time TM Ψ such that for every $w \in \{0, 1\}^*$:
 - If $w \in Y_1$, then Ψ halts on w with some $w' \in Y_2$ written on its tape
 - If $w \notin Y_1$, then Ψ halts on w with some $w' \notin Y_2$ written on its tape
- Notation: $Y_1 \leq_P Y_2$
 - Intuition: "Complexity of Y_1 " \leq "Complexity of Y_2 "

Mapping reductions

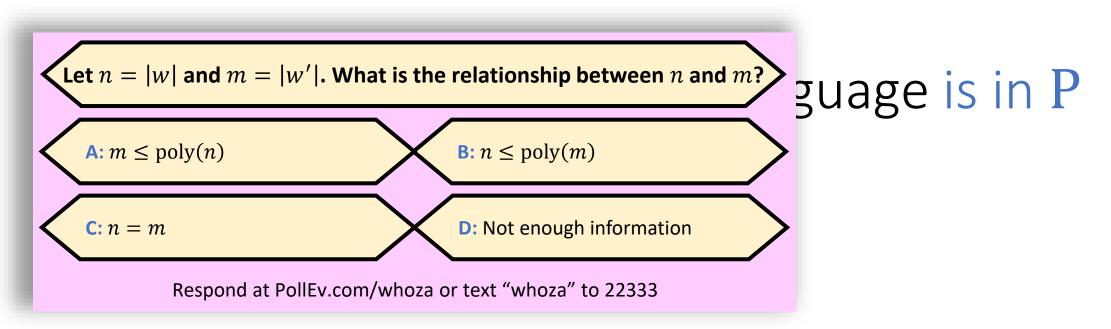
• $Y_1 \leq_P Y_2$ means there is an efficient way to convert questions of the

form "is $w \in Y_1$?" into questions of the form "is $w' \in Y_2$?"



Mapping reduction example

- COMPOSITES = { $\langle K \rangle$: *K* is a composite number}
- FACTOR = { $\langle K, M \rangle$: *K* has a prime factor $p \le M$ }
- Claim: COMPOSITES \leq_P FACTOR
- **Proof:** Given $\langle K \rangle$, the reduction produces $\langle K, K 1 \rangle$. Poly-time \checkmark
- If K is composite, then K has a prime factor less than $K \checkmark$
- If K is not composite, then K does not have a prime factor less than $K \checkmark$



- **Proof:** Given $w \in \{0, 1\}^*$:
 - 1. Simulate Ψ to produce w'

(this takes $O(n^{k_1})$ time)

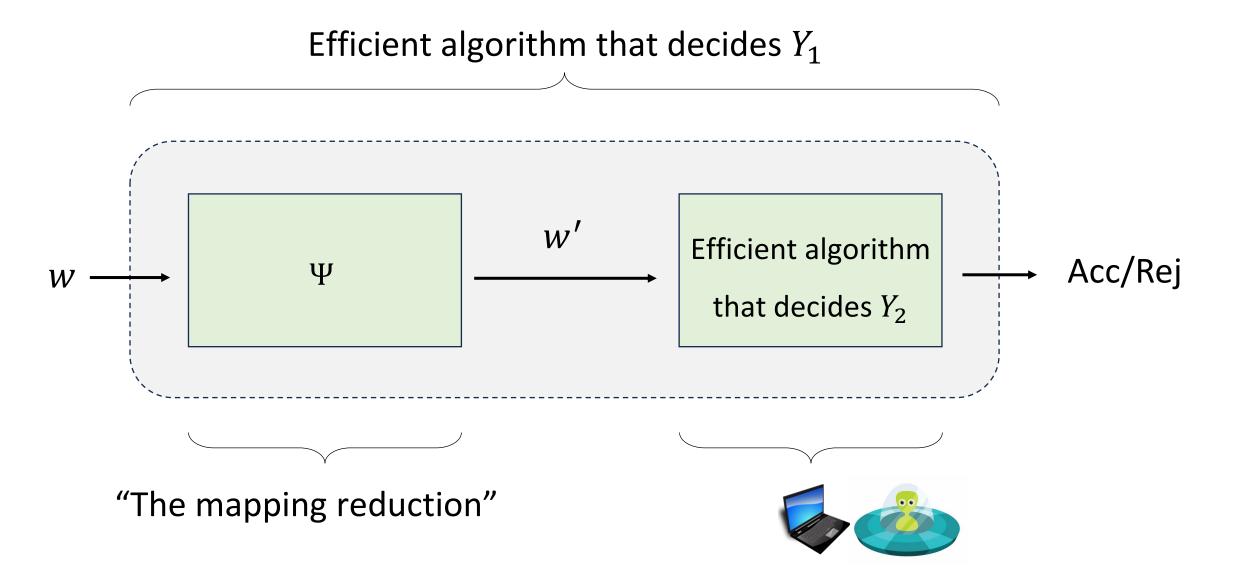
2. Check whether $w' \in Y_2$

(this takes $O(m^{k_2})$ time where m = |w'|)

3. If so, accept; otherwise, reject.

• $m \leq O(n^{k_1})$, so the total time is $O(n^{k_1} + n^{k_1 \cdot k_2}) = \operatorname{poly}(n)$

Reductions: Proving that a language is in P



Reductions: Proving that a language is not in P

- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- Claim: If $Y_1 \leq_P Y_2$ and $Y_1 \notin P$, then $Y_2 \notin P$
- **Proof:** If Y_2 were in P, then Y_1 would also be in P

EXP-hardness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is "EXP-hard" if, for every $L \in EXP$, we

have $L \leq_{\mathrm{P}} Y$

- Interpretation:
 - Y is at least as hard as any language in EXP
 - Every problem in EXP is basically a special case of Y

Example: BOUNDED-HALT is EXP-hard

- Claim: BOUNDED-HALT is EXP-hard
- **Proof:** Let $Y \in EXP$. We will show $Y \leq_P BOUNDED$ -HALT
- Let M be a 2^{n^k} -time TM deciding Y
- Construct M' by replacing q_{reject} with a looping state
- Mapping reduction Ψ : Given w, construct $\langle M', w, 2^{|w|^k} \rangle$

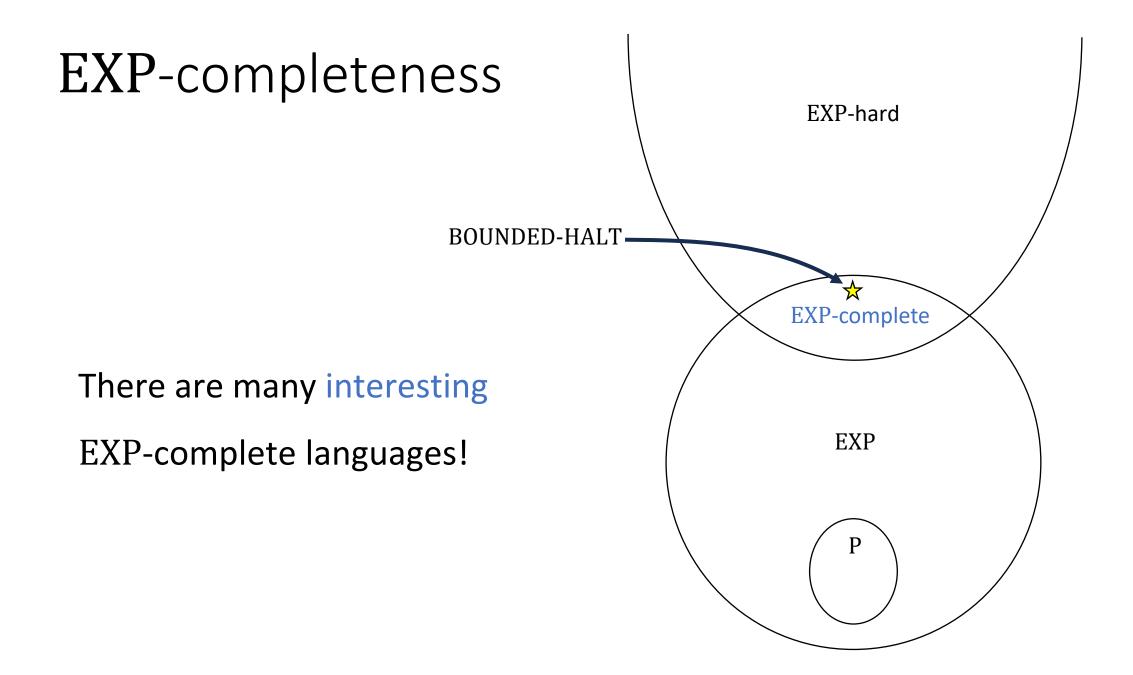
EXP-hard languages are intractable

- Let $Y \subseteq \{0, 1\}^*$
- Claim: If Y is EXP-hard, then $Y \notin P$
- **Proof:** There exists $Y_{hard} \in EXP$ such that $Y_{hard} \notin P$
- Since Y is EXP-hard, we have $Y_{hard} \leq_P Y$

EXP-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is EXP-complete if Y is EXP-hard and $Y \in EXP$
- The EXP-complete languages are the hardest languages in EXP
- If Y is EXP-complete, then the language Y can be said to

"capture" / "express" the entire complexity class EXP



Example: Chess

• Let GENERALIZED-CHESS = $\{\langle P \rangle : P \text{ is an }$

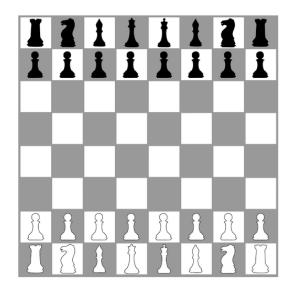
arrangement of chess pieces on an $N \times N$ board

from which "white" can force a win}

Theorem: GENERALIZED-CHESS is EXP-complete.

Consequently, GENERALIZED-CHESS \notin P.

• (Proof omitted. This theorem will not be on exercises/exams)

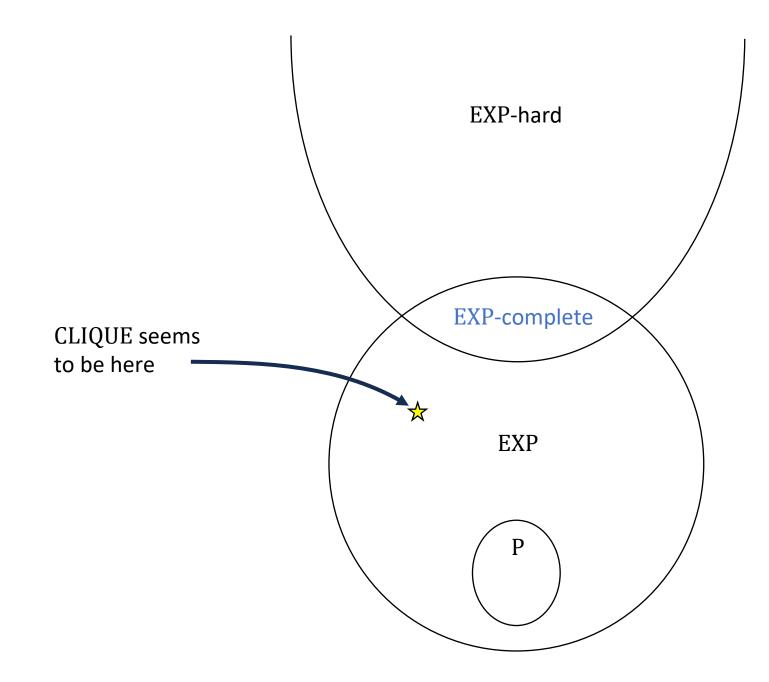


The power of EXP-hardness

- EXP-hardness is a valuable tool for identifying intractability
- Is EXP-hardness the only tool we need for identifying intractability?

Complexity of the clique problem

- Recall CLIQUE = { $\langle G, k \rangle$: G has a k-clique}
- CLIQUE \in EXP. (Why?)
- If you spend a while trying to design a good algorithm, eventually you might start to suspect that CLIQUE \notin P
- However, if you spend a while trying to design a good reduction, eventually you might start to suspect that CLIQUE is not EXP-complete either!



Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need new conceptual tools

Guessing and checking

- **Key insight:** There exists a polynomial-time randomized Turing machine *M* with the following properties.
 - If $\langle G, k \rangle \notin CLIQUE$, then $Pr[M \text{ accepts } \langle G, k \rangle] = 0$.
 - If $\langle G, k \rangle \in \text{CLIQUE}$, then $\Pr[M \text{ accepts } \langle G, k \rangle] \neq 0$.

"Nondeterministic TM"

• **Proof:** *M* picks a random subset of the vertices, accepts if it is a *k*-clique, and rejects otherwise.