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Which problems

can be solved

through computation?
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Which languages are in P?
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Which languages are not in P?
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The bounded halting problem

• BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• BOUNDED-HALT ∈ EXP

• Proof strategy: We’ll show that if BOUNDED-HALT were in P, then 

it would follow that P = EXP
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Theorem: BOUNDED-HALT ∉ P



Proof that BOUNDED-HALT ∉ P

• Assume 𝐵 is a poly-time TM deciding BOUNDED-HALT

• Let 𝑌 ∈ EXP. There is a TM 𝑀 that ൝ accepts 𝑤 within 2 𝑤 𝑘
 steps if 𝑤 ∈ 𝑌

 loops if 𝑤 ∉ 𝑌

• We will construct a poly-time TM 𝑅 that decides 𝑌
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Given 𝑤 ∈ 0, 1 ∗:

1. Simulate 𝐵 on 𝑀, 𝑤, 2 𝑤 𝑘
 

2. If 𝐵 accepts, accept. If 𝐵 rejects, reject.

• Polynomial time 

• If 𝑤 ∈ 𝑌, then 𝑀 accepts 𝑤 within 

2 𝑤 𝑘
 steps, so 𝑅 accepts 𝑤 

• If 𝑤 ∉ 𝑌, then 𝑀 loops on 𝑤, so 𝑅 

rejects 𝑤 

𝑅



Beyond “it’s not in P”

• We proved BOUNDED-HALT ∉ P

• Insight: The proof gives us bonus information

• “How far outside P is it?”

• “Why is it outside P? What kind of hardness does it have?”

• The proof shows that every language in EXP reduces to BOUNDED-HALT

• Furthermore, the reduction has a very specific structure
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Mapping reductions

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Definition: We say that 𝑌1 is poly-time mapping reducible to 𝑌2 if 

there exists a poly-time TM Ψ such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌1, then Ψ halts on 𝑤 with some 𝑤′ ∈ 𝑌2 written on its tape

• If 𝑤 ∉ 𝑌1, then Ψ halts on 𝑤 with some 𝑤′ ∉ 𝑌2 written on its tape

• Notation: 𝑌1 ≤P 𝑌2

• Intuition: “Complexity of 𝑌1” ≤ “Complexity of 𝑌2”
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Mapping reductions

• 𝑌1 ≤P 𝑌2 means there is an efficient way to convert questions of the 

form “is 𝑤 ∈ 𝑌1?” into questions of the form “is 𝑤′ ∈ 𝑌2?”
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0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ

Ψ



Mapping reduction example

• COMPOSITES = 𝐾 ∶ 𝐾 is a composite number

• FACTOR = 𝐾, 𝑀 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑀

• Claim: COMPOSITES ≤P FACTOR

• Proof: Given 𝐾 , the reduction produces 𝐾, 𝐾 − 1 . Poly-time 

• If 𝐾 is composite, then 𝐾 has a prime factor less than 𝐾 

• If 𝐾 is not composite, then 𝐾 does not have a prime factor less than 𝐾 
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Reductions: Proving that a language is in P

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Claim: If 𝑌1 ≤P 𝑌2 and 𝑌2 ∈ P, then 𝑌1 ∈ P.

• Proof: Given 𝑤 ∈ 0, 1 ∗:

1. Simulate Ψ to produce 𝑤′  (this takes 𝑂 𝑛𝑘1  time)

2. Check whether 𝑤′ ∈ 𝑌2  (this takes 𝑂 𝑚𝑘2  time where 𝑚 = 𝑤′ )

3. If so, accept; otherwise, reject.

• 𝑚 ≤ 𝑂 𝑛𝑘1 , so the total time is 𝑂 𝑛𝑘1 + 𝑛𝑘1⋅𝑘2 = poly 𝑛
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Let 𝑛 = 𝑤  and 𝑚 = 𝑤′ . What is the relationship between 𝑛 and 𝑚?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 𝑛 = 𝑚

B: 𝑛 ≤ poly 𝑚

D: Not enough information

A: 𝑚 ≤ poly 𝑛



Reductions: Proving that a language is in P
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Ψ
Efficient algorithm 

that decides 𝑌2

𝑤
𝑤′

Acc/Rej

Efficient algorithm that decides 𝑌1

“The mapping reduction”



Reductions: Proving that a language is not in P

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Claim: If 𝑌1 ≤P 𝑌2 and 𝑌1 ∉ P, then 𝑌2 ∉ P

• Proof: If 𝑌2 were in P, then 𝑌1 would also be in P
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EXP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say that 𝑌 is “EXP-hard” if, for every 𝐿 ∈ EXP, we 

have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in EXP

• Every problem in EXP is basically a special case of 𝑌
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Example: BOUNDED-HALT is EXP-hard

• Claim: BOUNDED-HALT is EXP-hard

• Proof: Let 𝑌 ∈ EXP. We will show 𝑌 ≤P BOUNDED-HALT

• Let 𝑀 be a 2𝑛𝑘
-time TM deciding 𝑌

• Construct 𝑀′ by replacing 𝑞reject with a looping state

• Mapping reduction Ψ: Given 𝑤, construct 𝑀′, 𝑤, 2 𝑤 𝑘
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EXP-hard languages are intractable

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: If 𝑌 is EXP-hard, then 𝑌 ∉ P

• Proof: There exists 𝑌hard ∈ EXP such that 𝑌hard ∉ P

• Since 𝑌 is EXP-hard, we have 𝑌hard ≤P 𝑌
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EXP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say that 𝑌 is EXP-complete if 𝑌 is EXP-hard and 

𝑌 ∈ EXP

• The EXP-complete languages are the hardest languages in EXP

• If 𝑌 is EXP-complete, then the language 𝑌 can be said to 

“capture” / “express” the entire complexity class EXP
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EXP-completeness
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P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT

There are many interesting 

EXP-complete languages!



Example: Chess

• Let GENERALIZED-CHESS = { 𝑃 ∶ 𝑃 is an 

arrangement of chess pieces on an 𝑁 × 𝑁 board 

from which "white" can force a win} 

• (Proof omitted. This theorem will not be on exercises/exams)
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Theorem: GENERALIZED-CHESS is EXP-complete.

Consequently, GENERALIZED-CHESS ∉ P.



The power of EXP-hardness

• EXP-hardness is a valuable tool for identifying intractability

• Is EXP-hardness the only tool we need for identifying intractability?
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Complexity of the clique problem

• Recall CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• CLIQUE ∈ EXP. (Why?)

• If you spend a while trying to design a good algorithm, eventually you might 

start to suspect that CLIQUE ∉ P

• However, if you spend a while trying to design a good reduction, eventually 

you might start to suspect that CLIQUE is not EXP-complete either!
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P

EXP

EXP-complete

EXP-hard

CLIQUE seems 
to be here



Complexity of the clique problem

• Evidently, to understand the complexity of CLIQUE, we need 

new conceptual tools
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Guessing and checking

• Key insight: There exists a polynomial-time randomized Turing machine 

𝑀 with the following properties.

• If 𝐺, 𝑘 ∉ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 = 0.

• If 𝐺, 𝑘 ∈ CLIQUE, then Pr 𝑀 accepts 𝐺, 𝑘 ≠ 0.

• Proof: 𝑀 picks a random subset of the vertices, accepts if it is a 𝑘-clique, 

and rejects otherwise.
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“Nondeterministic TM”
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