
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

BPP as a model of tractability

• Because of the amplification lemma, languages in BPP should be

considered “tractable”

• A mistake that occurs with probability 1/3100 can be safely ignored

2

Extended Church-Turing Thesis

• Is PIT a counterexample?

• Not necessarily

• PIT ∈ BPP, but maybe PIT ∈ P as well
3

Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.

P vs. BPP

• P ⊆ BPP

• Open question: Does P = BPP?

• Is randomness helpful for computation?

• Profound question about the nature of efficient computation

• If P ≠ BPP, then the extended Church-Turing thesis is false

4

P

BPP

P vs. BPP

• What would it take to prove P ≠ BPP?

• Define a language 𝑌

• Prove 𝑌 ∈ BPP

• Prove 𝑌 ∉ P

• Good candidate: 𝑌 = PIT

• What would it take to prove P = BPP?

5

P

BPP

Derandomization

• Suppose 𝑌 ∈ BPP

• If we want to decide 𝑌 without randomness, what can we do?

• How can we convert a randomized algorithm into a deterministic

algorithm?

6

Brute-force derandomization

• Let 𝑀 be a randomized Turing machine that decides 𝑌 with error

probability 1/3 and time complexity 𝑛𝑘

• Deterministic algorithm that decides 𝑌: Given 𝑤 ∈ 0, 1 𝑛:

7

1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

Brute-force derandomization: Correctness

• If 𝑤 ∈ 𝑌, then at least two thirds of the simulations will accept

• If 𝑤 ∉ 𝑌, then at most one third of the simulations will accept

8

1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the time complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 22Θ 𝑛

B: poly 𝑛

D: ∞

A: 2poly 𝑛

Brute-force derandomization: Time complexity

• Time complexity: 2poly 𝑛

• This algorithm does not show that P = BPP, but it does show that even

randomized algorithms have limitations. For example, HALT ∉ BPP
9

1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

The complexity class EXP

• Definition:

EXP = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time 2poly 𝑛

= ራ

𝑘=1

∞

TIME 2𝑛𝑘

• Brute-force derandomization proves BPP ⊆ EXP

10

P ⊆ BPP ⊆ EXP

11

P

EXP

Decidable languages

PIT ?

HALT

BPP

PALINDROMES

Brute-force derandomization: Space complexity

12

1. For every 𝑢 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑢 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the space complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 22Θ 𝑛

A: 2Θ 𝑛𝑘

D: ∞

B: poly 𝑛

The complexity class PSPACE

• Definition:

PSPACE = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in space poly 𝑛

• Brute-force derandomization proves that BPP ⊆ PSPACE

13

PSPACE vs. EXP

• Theorem 1: BPP ⊆ EXP

• Theorem 2: BPP ⊆ PSPACE

• Which theorem is stronger?

• How does PSPACE compare to EXP?

14

• Proof (1 slide): Let 𝑀 be a Turing machine that decides a language 𝑌

• Exercise 5: For each input, Time ≤ 𝐶Space+1, where 𝐶 depends only on 𝑀

• When Space = poly 𝑛 , we get

Time ≤ 𝐶poly 𝑛 = 2log 𝐶 poly 𝑛
= 2 log 𝐶 ⋅poly 𝑛 = 2poly 𝑛

15

Theorem: PSPACE ⊆ EXP

16

P

EXP

Decidable languages

BPP

PSPACE

Beyond brute-force derandomization

• There are other derandomization methods that are

more sophisticated

• We will see an example later in the course

• Because of these other methods, most experts conjecture P = BPP!

17

P

BPP

P = BPP

BPP and the Extended Church-Turing Thesis

• If experts are correct that P = BPP, then the Extended Church-Turing

Thesis survives the challenge posed by randomization

18

Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.

BPP and the Extended Church-Turing Thesis

• Just in case, the thesis is sometimes revised to allow randomization:

• This version is immune to the challenge posed by randomization

• However, there is a bigger threat: Quantum Computation

19

Extended Church-Turing Thesis, version 2:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ BPP.

Quantum computing

• Properly studying quantum computing is beyond the scope of this course

• We will briefly circle back to it later

• For now, let’s focus on P

• P is probably not the ultimate model of efficient computation…

• but it is still a valuable model

20

Which problems

can be solved

through computation?

21

Which languages are in P?

22

Which languages are not in P?

23

P vs. EXP

• Time Hierarchy Theorem: For every time-constructible 𝑇: ℕ → ℕ,

there exists a language 𝑌 ∈ TIME 𝑇4 such that 𝑌 ∉ TIME 𝑜 𝑇

• Corollary: P ≠ EXP

• Proof: P = 𝑘=1ڂ
∞ TIME 𝑛𝑘 ⊆ TIME 𝑜 2𝑛 ⊊ TIME 24𝑛 ⊆ EXP

• Interpretation: There are some exponential-time algorithms that cannot be

converted into polynomial-time algorithms

24

25

P

Decidable languages

All languages

PALINDROMES

HALT

{ 𝑀 ∶ 𝑀 rejects 𝑀 within 2 𝑀 steps}
EXP

Contrived vs. natural

• The language

𝑀 ∶ 𝑀 rejects 𝑀 within 2 𝑀 steps

is rather contrived

• Are there languages in EXP ∖ P that are interesting / natural / well-motivated?

26

The bounded halting problem

• Let BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Exercise: Can decide in time 𝑂 𝑀 2 ⋅ 𝑤 2 ⋅ 𝑇2

• The input size is 𝑛 = 𝑀, 𝑤, 𝑇 ≈ 𝑀 + 𝑤 + log 𝑇

• BOUNDED-HALT ∈ TIME 𝑛4 ⋅ 22𝑛 ⊆ EXP

27

Polynomial time? No!

The bounded halting problem

• BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Proof strategy: We’ll show that if BOUNDED-HALT were in P, then

it would follow that P = EXP

28

Theorem: BOUNDED-HALT ∉ P

Proof that BOUNDED-HALT ∉ P

• Assume 𝐵 is a poly-time TM deciding BOUNDED-HALT

• Let 𝑌 ∈ EXP. There is a TM 𝑀 that ൝ accepts 𝑤 within 2 𝑤 𝑘
 steps if 𝑤 ∈ 𝑌

 loops if 𝑤 ∉ 𝑌

• We will construct a poly-time TM 𝑅 that decides 𝑌

29

Given 𝑤 ∈ 0, 1 ∗:

1. Simulate 𝐵 on 𝑀, 𝑤, 2 𝑤 𝑘

2. If 𝐵 accepts, accept. If 𝐵 rejects, reject.

• Polynomial time

• If 𝑤 ∈ 𝑌, then 𝑀 accepts 𝑤 within

2 𝑤 𝑘
 steps, so 𝑅 accepts 𝑤

• If 𝑤 ∉ 𝑌, then 𝑀 loops on 𝑤, so 𝑅

rejects 𝑤

𝑅

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: BPP as a model of tractability
	Slide 3: Extended Church-Turing Thesis
	Slide 4: P vs. BPP
	Slide 5: P vs. BPP
	Slide 6: Derandomization
	Slide 7: Brute-force derandomization
	Slide 8: Brute-force derandomization: Correctness
	Slide 9: Brute-force derandomization: Time complexity
	Slide 10: The complexity class EXP
	Slide 11: P subset or equals BPP subset or equals EXP
	Slide 12: Brute-force derandomization: Space complexity
	Slide 13: The complexity class PSPACE
	Slide 14: PSPACE vs. EXP
	Slide 15
	Slide 16
	Slide 17: Beyond brute-force derandomization
	Slide 18: BPP and the Extended Church-Turing Thesis
	Slide 19: BPP and the Extended Church-Turing Thesis
	Slide 20: Quantum computing
	Slide 21: Which problems can be solved through computation?
	Slide 22: Which languages are in P?
	Slide 23: Which languages are not in P?
	Slide 24: P vs. EXP
	Slide 25
	Slide 26: Contrived vs. natural
	Slide 27: The bounded halting problem
	Slide 28: The bounded halting problem
	Slide 29: Proof that BOUNDED‑HALT not element of P

