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BPP as a model of tractability

e Because of the amplification lemma, languages in BPP should be

considered “tractable”

* A mistake that occurs with probability 1/31°° can be safely ignored



Extended Church-Turing Thesis

Extended Church-Turing Thesis:
Forevery Y € {0, 1}, it is physically possible to build a device

that decides Y in polynomial time if and only if Y € P.

* Is PIT a counterexample?

* Not necessarily

 PIT € BPP, but maybe PIT € P as well



P vs. BPP BPP

P € BPP

* Open question: Does P = BPP?

* |s randomness helpful for computation?

* Profound question about the nature of efficient computation

 |[f P # BPP, then the extended Church-Turing thesis is false



P vs. BPP BPP

 What would it take to prove P # BPP?
e Define alanguage Y
* Prove Y € BPP
* ProveY &P

e Good candidate: Y = PIT

* What would it take to prove P = BPP?



Derandomization

* Suppose Y € BPP
* |f we want to decide Y without randomness, what can we do?

* How can we convert a randomized algorithm into a deterministic

algorithm?



Brute-force derandomization

* Let M be a randomized Turing machine that decides Y with error

probability 1/3 and time complexity n*

* Deterministic algorithm that decides Y: Given w € {0, 1}™:

1. Foreveryu € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and u on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject




Brute-force derandomization: Correctness

1. Foreveryu € {0, 1}”k:
a) Simulate M, initialized with w on tape 1 and u on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the time complexity of the algorithm?

e Ifw €Y, then at least
< A: 2poly(n) >< B: poly(n)

e lfw &Y, then at most
<C: ZZG(n) ><D:oo
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Brute-force derandomization: Time complexity

1. Foreveryu € {0, 1}”k:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

* Time complexity: 2P°ly(™) ¢

* This algorithm does not show that P = BPP, but it does show that even

randomized algorithms have limitations. For example, HALT & BPP



The complexity class EXP

e Definition:

EXP = {Y c {0,1}" : Y(can)be decided in time ZPOIY(")}

- D TIME (2"")
k=1

* Brute-force derandomization proves BPP € EXP
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P € BPP © EXP

HALT

—

Decidable languages

PIT ?
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Brute-force derandomization: Space complexity

1.

2.

For every u € {0, 1}"k:

a)

b)

Simulate M, initialized with w on tape 1 and u on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

< What is the space complexity of the algorithm?

D

< A: 20(n") >< B: poly(n)

>

<o X o
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The complexity class PSPACE

e Definition:

PSPACE ={Y € {0,1}" : Y can be decided in space poly(n)}

e Brute-force derandomization proves that BPP € PSPACE
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PSPACE vs. EXP

* Theorem 1: BPP € EXP
e Theorem 2: BPP € PSPACE

* Which theorem is stronger?

* How does PSPACE compare to EXP?
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Theorem: PSPACE € EXP

* Proof (1 slide): Let M be a Turing machine that decides a language Y

c>pacetl where C depends only on M

e Exercise 5: For each input, Time <
* When Space = poly(n), we get

Time < Cpoly(n) — (ZIOg c)poly(n) _ 2(10g C)-poly(n) _ Zpoly(n)
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Decidable languages

PSPACE
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Beyond brute-force derandomization BPP

e There are other derandomization methods that are
more sophisticated

 We will see an example later in the course

* Because of these other methods, most experts conjecture P = BPP!
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BPP and the Extended Church-Turing Thesis

Extended Church-Turing Thesis:
Forevery Y € {0, 1}, it is physically possible to build a device

that decides Y in polynomial time if and only if Y € P.

* If experts are correct that P = BPP, then the Extended Church-Turing

Thesis survives the challenge posed by randomization
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BPP and the Extended Church-Turing Thesis

e Just in case, the thesis is sometimes revised to allow randomization:

urch-Turing Thesi

ForeveryY ¢ {0, 1},. vossible to build a device

/" in polynomial time if and only

* This version is immune to the challenge posed by randomization

* However, there is a bigger threat: Quantum Computation
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Quantum computing

* Properly studying quantum computing is beyond the scope of this course
* We will briefly circle back to it later

 For now, let’s focus on P

* P is probably not the ultimate model of efficient computation...

e butitis still a valuable model
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Which problems
can be solved

through/gomputation?
CLASSICAL



Which languages are in P?



Which languages are not in P?



P vs. EXP

* Time Hierarchy Theorem: For every time-constructible 7: N — N,

there exists a language Y € TIME(T?) such thatY & TIME(O(T))

* Corollary: P + EXP
* Proof: P = Uy TIME(n*) < TIME(0(2™)) < TIME(2*") < EXP

* Interpretation: There are some exponential-time algorithms that cannot be

converted into polynomial-time algorithms
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All languages

w

Decidable languages

HALT

{(M) : M rejects (M) within 21"l steps}

PALINDROMES
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* The language

{{M) : M rejects (M) within 2/'"| steps}
is rather contrived

* Are there languages in EXP \ P that are interesting / natural / well-motivated?
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The bounded halting problem

* Let BOUNDED-HALT = {{M,w, T) : M halts on w within T steps}

* Exercise: Can decide in time O(|[{M)|? - |w|? - T?)
°Q
O

Polynomial time?

* A Theinputsizeisn = [(M,w,T)| = |[{(M)| + [{w)| + logT

 BOUNDED-HALT € TIME(n?* - 22") € EXP
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The bounded halting problem

 BOUNDED-HALT = {{M,w, T) : M halts on w within T steps}

Theorem: BOUNDED-HALT & P

* Proof strategy: We'll show that if BOUNDED-HALT were in P, then

it would follow that P = EXP
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Proof that BOUNDED-HALT & P

* Assume B is a poly-time TM deciding BOUNDED-HALT

+ Let Y € EXP. There is a TM M that { 2¢cepts w within 2 steps ifw € ¥
loops ifwegyY

* We will construct a poly-time TM R that decides Y

/‘
e Polynomial time «

Givenw € {0, 1}":

* Ifw €Y, then M accepts w within

k
21wl steps, so R accepts w «

L] k
1. Simulate B on <M, w, 2wl >
* Ifw &Y, then M loops onw, so R

2. |If B accepts, accept. If B rejects, reject. rejects w
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