#### CMSC 28100

## Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza



1

## BPP as a model of tractability

- Because of the amplification lemma, languages in BPP should be considered "tractable"
- A mistake that occurs with probability  $1/3^{100}$  can be safely ignored

## Extended Church-Turing Thesis

#### **Extended Church-Turing Thesis:**

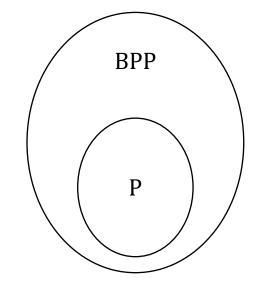
For every  $Y \subseteq \{0, 1\}^*$ , it is physically possible to build a device

that decides Y in polynomial time if and only if  $Y \in P$ .

- Is PIT a counterexample?
- Not necessarily
- PIT  $\in$  BPP, but maybe PIT  $\in$  P as well

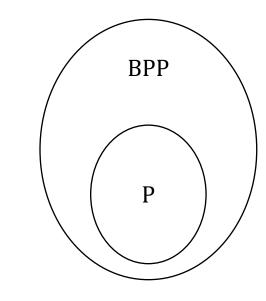
### P vs. BPP

- $P \subseteq BPP$
- **Open question:** Does P = BPP?
  - Is randomness helpful for computation?
- Profound question about the nature of efficient computation
- If  $P \neq BPP$ , then the extended Church-Turing thesis is false



## P vs. BPP

- What would it take to prove  $P \neq BPP$ ?
  - Define a language *Y*
  - Prove  $Y \in BPP$
  - Prove  $Y \notin P$
  - Good candidate: Y = PIT
- What would it take to prove P = BPP?



#### Derandomization

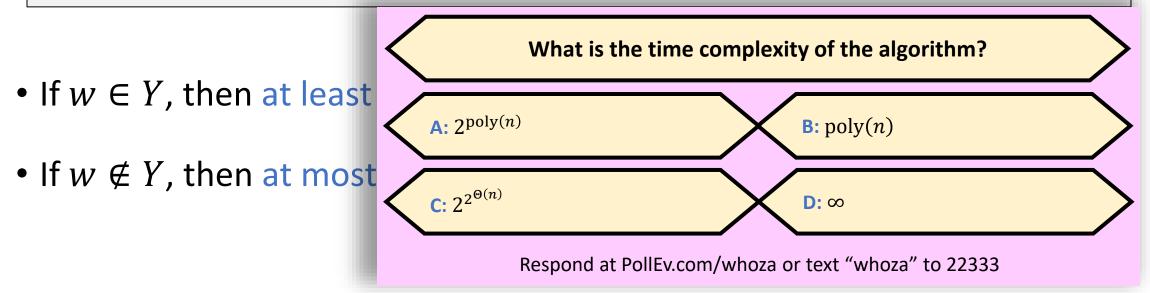
- Suppose  $Y \in BPP$
- If we want to decide *Y* without randomness, what can we do?
- How can we convert a randomized algorithm into a deterministic algorithm?

## Brute-force derandomization

- Let M be a randomized Turing machine that decides Y with error probability 1/3 and time complexity  $n^k$
- Deterministic algorithm that decides Y: Given  $w \in \{0, 1\}^n$ :
  - 1. For every  $u \in \{0, 1\}^{n^k}$ :
    - a) Simulate *M*, initialized with *w* on tape 1 and *u* on tape 2
    - b) Keep a count of how many simulations accept
  - 2. If more than half of the simulations accepted, then accept. Otherwise, reject

### Brute-force derandomization: Correctness

- 1. For every  $u \in \{0, 1\}^{n^k}$ :
  - a) Simulate *M*, initialized with *w* on tape 1 and *u* on tape 2
  - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject



## Brute-force derandomization: Time complexity

- 1. For every  $u \in \{0, 1\}^{n^k}$ :
  - a) Simulate *M*, initialized with *w* on tape 1 and *u* on tape 2
  - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject

- Time complexity:  $2^{\text{poly}(n)}$  😵
- This algorithm does not show that P = BPP, but it does show that even randomized algorithms have limitations. For example, HALT ∉ BPP

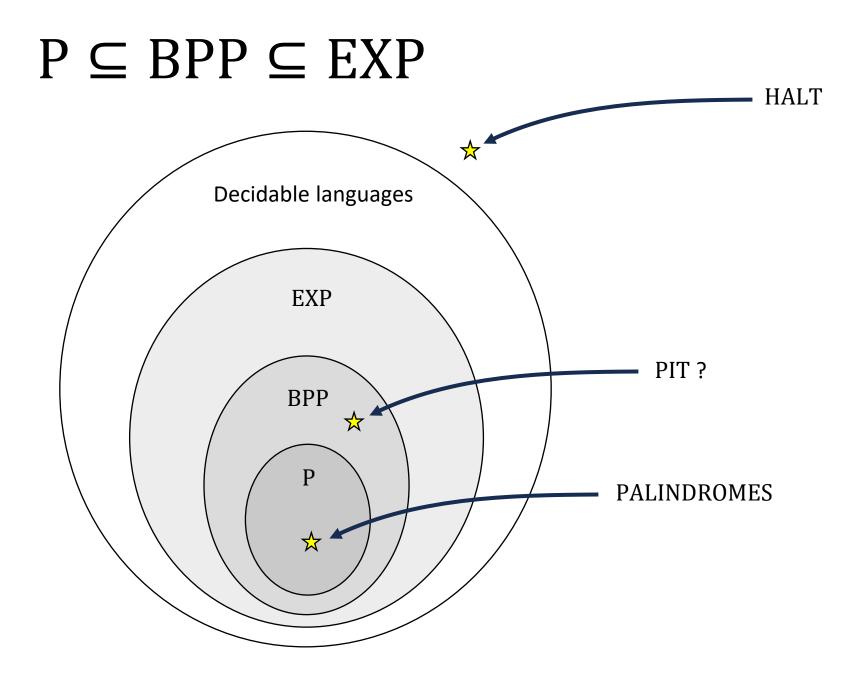
## The complexity class EXP

• Definition:

 $EXP = \{Y \subseteq \{0, 1\}^* : Y \text{ can} be decided in time 2^{poly(n)}\}$ 

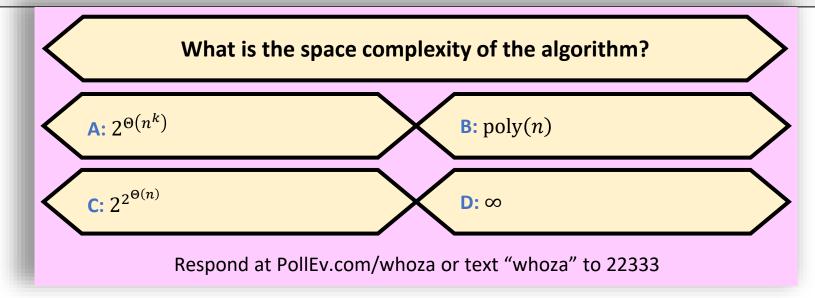
$$= \bigcup_{k=1}^{\infty} \text{TIME}\left(2^{n^k}\right)$$

• Brute-force derandomization proves  $BPP \subseteq EXP$ 



## Brute-force derandomization: Space complexity

- 1. For every  $u \in \{0, 1\}^{n^k}$ :
  - a) Simulate *M*, initialized with *w* on tape 1 and *u* on tape 2
  - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject



## The complexity class PSPACE

• Definition:

 $PSPACE = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in space } poly(n)\}$ 

• Brute-force derandomization proves that BPP ⊆ PSPACE

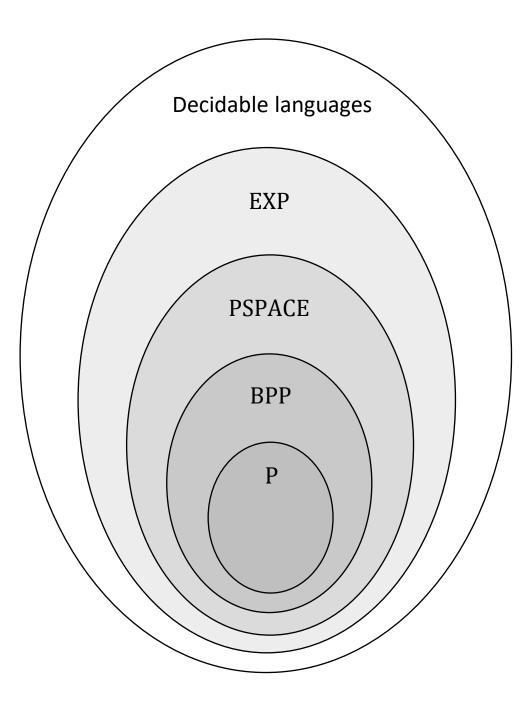
#### PSPACE vs. EXP

- Theorem 1: BPP  $\subseteq$  EXP
- **Theorem 2:** BPP  $\subseteq$  PSPACE
- Which theorem is stronger?
- How does **PSPACE** compare to **EXP**?

#### **Theorem:** PSPACE $\subseteq$ EXP

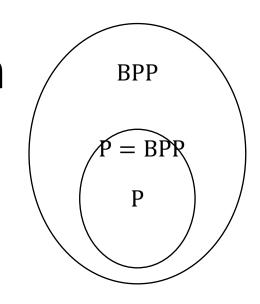
- **Proof (1 slide):** Let *M* be a Turing machine that decides a language *Y*
- Exercise 5: For each input, Time  $\leq C^{\text{Space+1}}$ , where C depends only on M
- When Space = poly(n), we get

Time 
$$\leq C^{\operatorname{poly}(n)} = (2^{\log C})^{\operatorname{poly}(n)} = 2^{(\log C) \cdot \operatorname{poly}(n)} = 2^{\operatorname{poly}(n)}$$



## Beyond brute-force derandomization

- There are other derandomization methods that are more sophisticated
  - We will see an example later in the course
- Because of these other methods, most experts conjecture P = BPP!



## BPP and the Extended Church-Turing Thesis

#### **Extended Church-Turing Thesis:**

For every  $Y \subseteq \{0, 1\}^*$ , it is physically possible to build a device

that decides Y in polynomial time if and only if  $Y \in P$ .

• If experts are correct that P = BPP, then the Extended Church-Turing

Thesis survives the challenge posed by randomization

## BPP and the Extended Church-Turing Thesis

• Just in case, the thesis is sometimes revised to allow randomization:

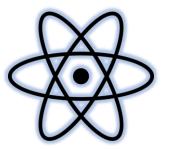
**Extended Church-Turing Thesis, version 2:** 

For every  $Y \subseteq \{0, 1\}^*$ , it is physically possible to build a device

that decides Y in polynomial time if and only if  $Y \in BPP$ .

- This version is immune to the challenge posed by randomization
- However, there is a bigger threat: Quantum Computation

## Quantum computing



- Properly studying quantum computing is beyond the scope of this course
- We will briefly circle back to it later
- For now, let's focus on P
- P is probably not the ultimate model of efficient computation...
- but it is still a valuable model

# Which problems

## can be solved

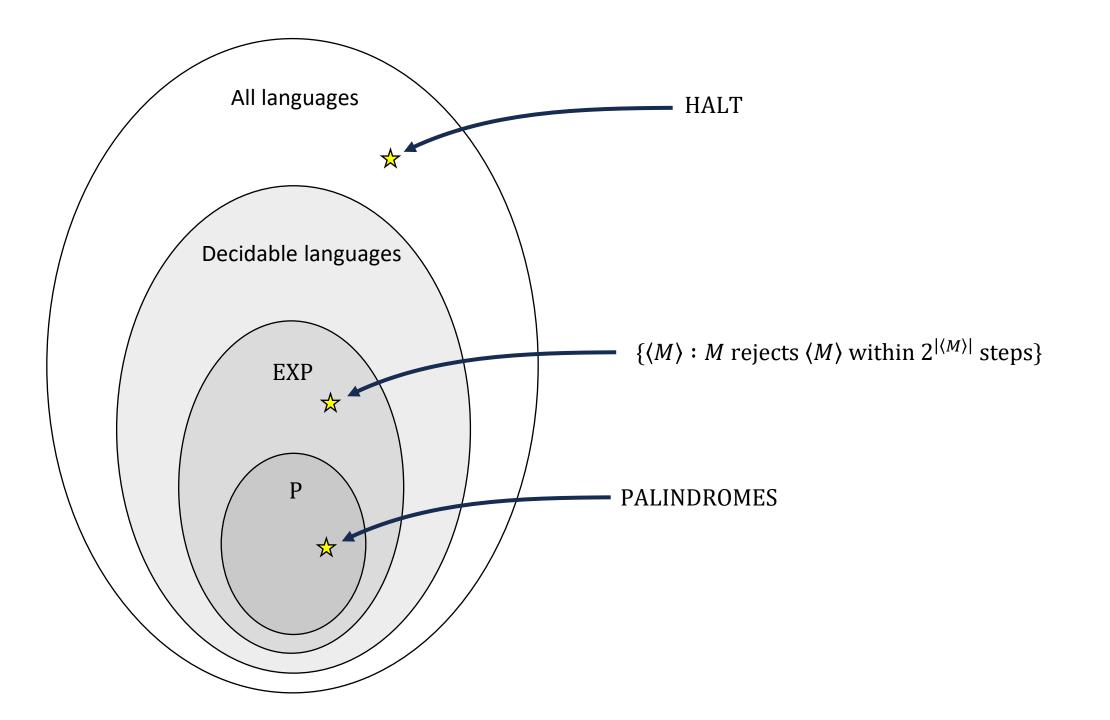
through computation?

# Which languages are in P?

# Which languages are not in P?

#### P vs. EXP

- Time Hierarchy Theorem: For every time-constructible  $T: \mathbb{N} \to \mathbb{N}$ , there exists a language  $Y \in \text{TIME}(T^4)$  such that  $Y \notin \text{TIME}(o(T))$
- Corollary:  $P \neq EXP$ 
  - **Proof:**  $P = \bigcup_{k=1}^{\infty} TIME(n^k) \subseteq TIME(o(2^n)) \subsetneq TIME(2^{4n}) \subseteq EXP$
  - Interpretation: There are some exponential-time algorithms that cannot be converted into polynomial-time algorithms

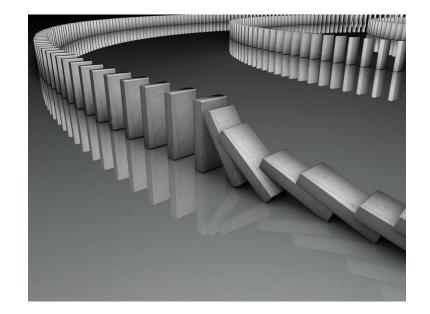


### Contrived vs. natural

• The language

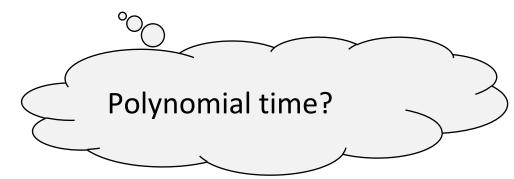
$$\{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$$

- is rather contrived
- Are there languages in EXP  $\setminus$  P that are interesting / natural / well-motivated?



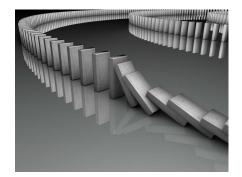
## The bounded halting problem

- Let BOUNDED-HALT = { $\langle M, w, T \rangle$  : *M* halts on *w* within *T* steps}
- Exercise: Can decide in time  $O(|\langle M \rangle|^2 \cdot |w|^2 \cdot T^2)$



- 1 The input size is  $n = |\langle M, w, T \rangle| \approx |\langle M \rangle| + |\langle w \rangle| + \log T$
- BOUNDED-HALT  $\in$  TIME $(n^4 \cdot 2^{2n}) \subseteq EXP$

## The bounded halting problem



• BOUNDED-HALT = { $\langle M, w, T \rangle$  : *M* halts on *w* within *T* steps}

#### **Theorem:** BOUNDED-HALT ∉ P

• Proof strategy: We'll show that if BOUNDED-HALT were in P, then it would follow that P = EXP

## Proof that BOUNDED-HALT $\notin$ P



- Assume B is a poly-time TM deciding BOUNDED-HALT
- Let  $Y \in \text{EXP}$ . There is a TM M that  $\begin{cases} \text{accepts } w \text{ within } 2^{|w|^k} \text{ steps } & \text{if } w \in Y \\ \text{loops} & \text{if } w \notin Y \end{cases}$
- We will construct a poly-time TM R that decides Y

```
Given w \in \{0, 1\}^*:
```

R

1. Simulate *B* on 
$$\langle M, w, 2^{|w|^k} \rangle$$

2. If *B* accepts, accept. If *B* rejects, reject.

- Polynomial time 🗸
- If  $w \in Y$ , then M accepts w within  $2^{|w|^k}$  steps, so R accepts  $w \checkmark$
- If w ∉ Y, then M loops on w, so R
  rejects w ✓