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Arithmetic formulas

* Definition: A k-variate arithmetic formula is a rooted binary tree

e Each internal node is labeled with + or X

* Each leaf is labeled with 0, 1, —1, or a variable among x4, ..., X °



Polynomial identity testing

* Problem: Given an arithmetic formula F, determine whether F = 0
* As a language: PIT = {(F) : F is an arithmetic formula and F = 0}
* Open Question: Is PIT € P?

* Next 10 slides: We will prove PIT € BPP



Evaluating an arithmetic formula

e Let F be a k-variate arithmetic formula and let ¥ € Z¥

Lemma: Given (F, x), one can compute F(X) € Z in polynomial time.

x1 — 2
XZ = —4
F(x{,xy) = —12

Possible concern: How big can these numbers get?




Bound on the magnitude of the output

e Let M = max(|x4], |x,], ..., |xx |, 2) and let d be the number of leaves

e Claim: |F(X¥)| < M?. Proof by induction:
e Base case: d = 1: trivial ««
* If F(X) = FL(X) - FR(X), then |[F(X)| = |[F,(X)| - |[Fr(XD)] < MY - M= = M“

s If F(X) = F,(X) + Fr(X), then |[F(3D)| < |FL(3D)| + |Fr(¥)| < M + M*® < M4



Evaluating an arithmetic formula

e Let F be a k-variate arithmetic formula and let ¥ € Z¥

Lemma: Given (F, x), one can compute F(X) € Z in polynomial time.

* Proof sketch: Evaluate the nodes one by one, starting at the leaves

* M < 2™ and d < n, so each node outputs y such that |[y| < M% < on’
* In other words, y is an 0(n?)-bit integer

* There are O(n) nodes, and we can do arithmetic in polynomial time «”



Note on standards of rigor

* Going forward, when we analyze specific algorithms, we will often assert
that they run in polynomial time without a rigorous proof

* In each case, one can rigorously prove the time bound by describing a TM

implementation and reasoning about the motions of the heads...
* But this is tedious

* Note: We still prove correctness whenever it is nontrivial, just not efficiency

* You should follow this convention on exercise 14 and beyond



Polynomial identity testing

* We are given (F), where F is an arithmetic formula

e Goal: Figure out whether F = 0

*If F =0, then F(x) = 0 forall x (&

* Even if I Z 0, there still might be some X such that F(x) = 0 &

* How often can this occur?



How many roots can a nonzero degree-d two-variable polynomial >

COuntlﬂg FO< have?

<A:Uptod ><B:Uptod2 >
_ . e D: Only finitely many, but there is
< C: It might have infinitely many >< 6 bound in terms of d >

Respond at PollEv.com/whoza or text “whoza” to 22333

* Fundamental Theorem of Algebra = Every nonzero degree-d

univariate polynomial has at most d real roots

 What about a multivariate polynomial?



Polynomial Identity Lemma

* Evenif F £ 0, it might have infinitely many roots =

2

* Intuition: Roots are nevertheless “rare” F=y-x

e Let F : R® - R be a multivariate polynomial of degree at most d in

each variable individually

e Llet S € R and assume S is finite

Polynomial Identity Lemma: If F % 0, then |[F~1(0) n S| < dk - |S]*1

10



Polynomial Identity Lemma: If F Z 0, then ‘F‘l(O) N S"‘ < dk - |S|*1

Proof when k = 2: Write F(x,y) = zd:o F;(x) - y* and suppose F, Z 0

FHO) NS = ) iy eS: Flxy) = 0}
XES
= > lyes:Fay =0+ ) Iyes:Fxy) =0}
Fp(x)=0 Fp(x)#0

<d-|S|+1|S|-d

\ Fundamental Theorem

= 2d - |S| of Algebra
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Theorem: PIT € BPP Given F with k variables and d leaves:
1. LetS =1{1,...,3dk}

* Polynomial time . Pick X € S* uniformly at random

2
* Correctness proof: 3. Compute F(X) € Z
4. If F(x) = 0, accept, otherwise reject

* Degree < d (prove by induction)

* If F = 0, then Pr|accept] =1

e If F £ 0, then by the Polynomial Identity Lemma, we have

F_10 ﬂSk dk.Sk—l dk 1
Pr[accept] = Pr[F(x) = 0] = ‘ (|S2€| ‘ < N B B

ISk~ 3dk 3




Polynomial identity testing: Recap

* It is an open question whether PIT € P
* We proved PIT € BPP

e Does that mean we should consider PIT “tractable?”
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The complexity class BPP s 3

* Definition: BPP is the set of languages Y € {0, 1}* such that there
exists a randomized polynomial-time Turing machine that decides Y

with error probability 1/3
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Amplification lemma

* Suppose a language Y € {0, 1}* can be decided by a time-T Turing
machine M, with error probability 1/3

* Let k € N be any constant

Amplification Lemma: There exists a randomized time-T" Turing machine

that decides Y with error probability 3‘"k, where T'(n) = O(T(n) : nk).

* Asn — oo, the error probability goes to 0 extremely rapidly!
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If M, uses R(n) many random bits, then how many random bits >

PFOO]C Of the amp< does the new TM use?

<A:R(n) + nk ><B:R(n)-nk >

* For simplicity, assume that
<C:R(n)k ><D: Not enough information >

e Forw €& Y, we merely assur

Respond at PollEv.com/whoza or text “whoza” to 22333

Givenw € {0, 1}":

1) Fori=1to nk. > Time complexity:

0(T(n) - n*
a) Simulate M, on w using fresh random bits. If it rejects, reject. (TG - )

2) Accept.

* Ifw €Y, then Pr[M accepts w] =1

* Ifw ¢ Y, then Pr[M accepts w] < (1/3)"k = 1/3"k
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BPP as a model of tractability

e Because of the amplification lemma, languages in BPP should be
considered “tractable”

3100

* A mistake that occurs with probability 1/ can be safely ignored

* (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)
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Extended Church-Turing Thesis

Extended Church-Turing Thesis:
Forevery Y € {0, 1}, it is physically possible to build a device

that decides Y in polynomial time if and only if Y € P.

* Is PIT a counterexample?
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