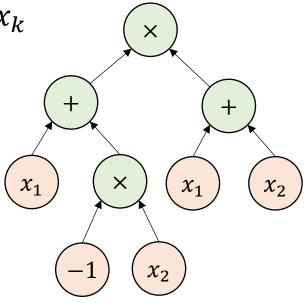
CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Arithmetic formulas

- **Definition:** A *k*-variate arithmetic formula is a rooted binary tree
 - Each internal node is labeled with + or \times
 - Each leaf is labeled with 0, 1, -1, or a variable among x_1, \ldots, x_k



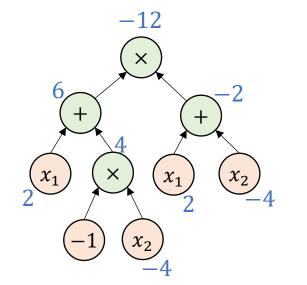
Polynomial identity testing

- **Problem:** Given an arithmetic formula F, determine whether $F \equiv 0$
- As a language: $PIT = \{\langle F \rangle : F \text{ is an arithmetic formula and } F \equiv 0\}$
- **Open Question:** Is $PIT \in P$?
- Next 10 slides: We will prove PIT \in BPP

Evaluating an arithmetic formula

• Let F be a k-variate arithmetic formula and let $\vec{x} \in \mathbb{Z}^k$

Lemma: Given $\langle F, \vec{x} \rangle$, one can compute $F(\vec{x}) \in \mathbb{Z}$ in polynomial time.



$$x_1 = 2$$

 $x_2 = -4$
 $F(x_1, x_2) = -12$

Possible concern: How big can these numbers get?

Bound on the magnitude of the output

- Let $M = \max(|x_1|, |x_2|, ..., |x_k|, 2)$ and let d be the number of leaves
- Claim: $|F(\vec{x})| \leq M^d$. Proof by induction:
 - Base case: d = 1: trivial \checkmark
 - If $F(\vec{x}) = F_L(\vec{x}) \cdot F_R(\vec{x})$, then $|F(\vec{x})| = |F_L(\vec{x})| \cdot |F_R(\vec{x})| \le M^{d_L} \cdot M^{d_R} = M^d$
 - If $F(\vec{x}) = F_L(\vec{x}) + F_R(\vec{x})$, then $|F(\vec{x})| \le |F_L(\vec{x})| + |F_R(\vec{x})| \le M^{d_L} + M^{d_R} \le M^d$

Evaluating an arithmetic formula

• Let F be a k-variate arithmetic formula and let $\vec{x} \in \mathbb{Z}^k$

Lemma: Given $\langle F, \vec{x} \rangle$, one can compute $F(\vec{x}) \in \mathbb{Z}$ in polynomial time.

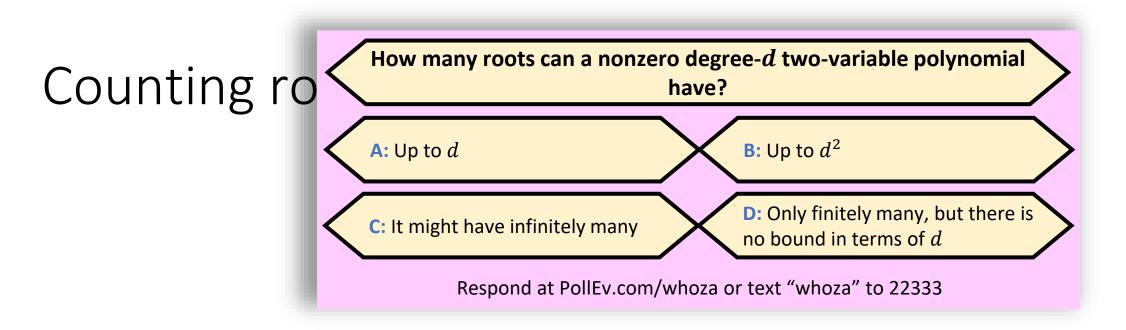
- **Proof sketch:** Evaluate the nodes one by one, starting at the leaves
- $M \leq 2^n$ and $d \leq n$, so each node outputs y such that $|y| \leq M^d \leq 2^{n^2}$
- In other words, y is an $O(n^2)$ -bit integer
- There are O(n) nodes, and we can do arithmetic in polynomial time \checkmark

Note on standards of rigor

- Going forward, when we analyze specific algorithms, we will often assert that they run in polynomial time without a rigorous proof
 - In each case, one can rigorously prove the time bound by describing a TM implementation and reasoning about the motions of the heads...
 - But this is tedious
 - Note: We still prove correctness whenever it is nontrivial, just not efficiency
- You should follow this convention on exercise 14 and beyond

Polynomial identity testing

- We are given $\langle F \rangle$, where F is an arithmetic formula
- Goal: Figure out whether $F \equiv 0$
- If $F \equiv 0$, then $F(\vec{x}) = 0$ for all $\vec{x} \cong$
- Even if $F \not\equiv 0$, there still might be some \vec{x} such that $F(\vec{x}) = 0$ 😮
- How often can this occur?



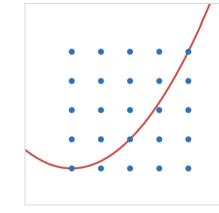
• Fundamental Theorem of Algebra \Rightarrow Every nonzero degree-d

univariate polynomial has at most d real roots

• What about a multivariate polynomial?

Polynomial Identity Lemma

- Even if $F \not\equiv 0$, it might have infinitely many roots 🙁
- Intuition: Roots are nevertheless "rare"



- $F = y x^2$
- Let $F : \mathbb{R}^k \to \mathbb{R}$ be a multivariate polynomial of degree at most d in each variable individually
- Let $S \subseteq \mathbb{R}$ and assume S is finite

Polynomial Identity Lemma: If $F \not\equiv 0$, then $|F^{-1}(0) \cap S^k| \leq dk \cdot |S|^{k-1}$

Polynomial Identity Lemma: If $F \not\equiv 0$, then $|F^{-1}(0) \cap S^k| \leq dk \cdot |S|^{k-1}$

Proof when k = 2: Write $F(x, y) = \sum_{i=0}^{d} F_i(x) \cdot y^i$ and suppose $F_{\ell} \not\equiv 0$

$$|F^{-1}(0) \cap S^{2}| = \sum_{x \in S} |\{y \in S : F(x, y) = 0\}|$$

= $\sum_{F_{\ell}(x)=0} |\{y \in S : F(x, y) = 0\}| + \sum_{F_{\ell}(x)\neq 0} |\{y \in S : F(x, y) = 0\}|$
 $\leq d \cdot |S| + |S| \cdot d$
= $2d \cdot |S|$ Fundamental Theorem of Algebra

Theorem: $PIT \in BPP$

- Polynomial time 🗸
- Correctness proof:
- Degree $\leq d$ (prove by induction)
- If $F \equiv 0$, then $\Pr[\operatorname{accept}] = 1$
- If $F \not\equiv 0$, then by the Polynomial Identity Lemma, we have

$$\Pr[\operatorname{accept}] = \Pr[F(\vec{x}) = 0] = \frac{\left|F^{-1}(0) \cap S^k\right|}{|S^k|} \le \frac{dk \cdot |S|^{k-1}}{|S|^k} = \frac{dk}{3dk} = \frac{1}{3}$$

Given F with k variables and d leaves:

- 1. Let $S = \{1, ..., 3dk\}$
- 2. Pick $\vec{x} \in S^k$ uniformly at random
- 3. Compute $F(\vec{x}) \in \mathbb{Z}$
- 4. If $F(\vec{x}) = 0$, accept, otherwise reject

Polynomial identity testing: Recap

- It is an open question whether $PIT \in P$
- We proved PIT \in BPP
- Does that mean we should consider PIT "tractable?"

The complexity class BPP

• **Definition:** BPP is the set of languages $Y \subseteq \{0, 1\}^*$ such that there

exists a randomized polynomial-time Turing machine that decides Y

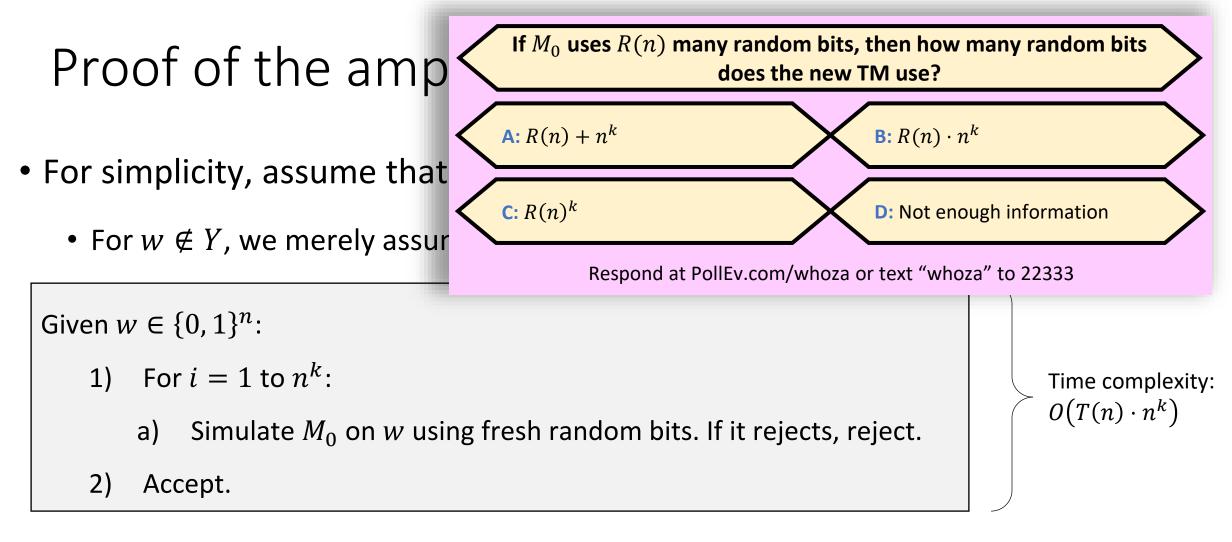
with error probability $\frac{1/3}{1}$

Amplification lemma

- Suppose a language $Y \subseteq \{0, 1\}^*$ can be decided by a time-*T* Turing machine M_0 with error probability 1/3
- Let $k \in \mathbb{N}$ be any constant

Amplification Lemma: There exists a randomized time-*T*' Turing machine that decides *Y* with error probability 3^{-n^k} , where $T'(n) = O(T(n) \cdot n^k)$.

• As $n \to \infty$, the error probability goes to 0 extremely rapidly!



- If $w \in Y$, then $\Pr[M \text{ accepts } w] = 1$
- If $w \notin Y$, then $\Pr[M \text{ accepts } w] \le (1/3)^{n^k} = 1/3^{n^k}$

BPP as a model of tractability

- Because of the amplification lemma, languages in BPP should be considered "tractable"
- A mistake that occurs with probability $1/3^{100}$ can be safely ignored
- (Even if you use a deterministic algorithm, can you really be 100% certain that the computation was carried out correctly?)

Extended Church-Turing Thesis

Extended Church-Turing Thesis:

For every $Y \subseteq \{0, 1\}^*$, it is physically possible to build a device

that decides Y in polynomial time if and only if $Y \in P$.

• Is PIT a counterexample?