
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Arithmetic formulas

• Definition: A 𝑘-variate arithmetic formula is a rooted binary tree

• Each internal node is labeled with + or ×

• Each leaf is labeled with 0, 1, −1, or a variable among 𝑥1, … , 𝑥𝑘

2

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1

Polynomial identity testing

• Problem: Given an arithmetic formula 𝐹, determine whether 𝐹 ≡ 0

• As a language: PIT = 𝐹 ∶ 𝐹 is an arithmetic formula and 𝐹 ≡ 0

• Open Question: Is PIT ∈ P?

• Next 10 slides: We will prove PIT ∈ BPP

3

Evaluating an arithmetic formula

• Let 𝐹 be a 𝑘-variate arithmetic formula and let Ԧ𝑥 ∈ ℤ𝑘

4

Lemma: Given 𝐹, Ԧ𝑥 , one can compute 𝐹 Ԧ𝑥 ∈ ℤ in polynomial time.

𝑥1 = 2

𝑥2 = −4

𝐹 𝑥1, 𝑥2 = −12

Possible concern: How big can these numbers get?
2 −42

−4

6 −2

−12

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1

4

Bound on the magnitude of the output

• Let 𝑀 = max 𝑥1 , 𝑥2 , … , 𝑥𝑘 , 2 and let 𝑑 be the number of leaves

• Claim: 𝐹 Ԧ𝑥 ≤ 𝑀𝑑. Proof by induction:

• Base case: 𝑑 = 1: trivial

• If 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 ⋅ 𝐹𝑅 Ԧ𝑥 , then 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 ⋅ 𝐹𝑅 Ԧ𝑥 ≤ 𝑀𝑑𝐿 ⋅ 𝑀𝑑𝑅 = 𝑀𝑑

• If 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 + 𝐹𝑅 Ԧ𝑥 , then 𝐹 Ԧ𝑥 ≤ 𝐹𝐿 Ԧ𝑥 + 𝐹𝑅 Ԧ𝑥 ≤ 𝑀𝑑𝐿 + 𝑀𝑑𝑅 ≤ 𝑀𝑑

5

Evaluating an arithmetic formula

• Let 𝐹 be a 𝑘-variate arithmetic formula and let Ԧ𝑥 ∈ ℤ𝑘

• Proof sketch: Evaluate the nodes one by one, starting at the leaves

• 𝑀 ≤ 2𝑛 and 𝑑 ≤ 𝑛, so each node outputs 𝑦 such that 𝑦 ≤ 𝑀𝑑 ≤ 2𝑛2

• In other words, 𝑦 is an 𝑂 𝑛2 -bit integer

• There are 𝑂 𝑛 nodes, and we can do arithmetic in polynomial time

6

Lemma: Given 𝐹, Ԧ𝑥 , one can compute 𝐹 Ԧ𝑥 ∈ ℤ in polynomial time.

Note on standards of rigor

• Going forward, when we analyze specific algorithms, we will often assert

that they run in polynomial time without a rigorous proof

• In each case, one can rigorously prove the time bound by describing a TM

implementation and reasoning about the motions of the heads…

• But this is tedious

• Note: We still prove correctness whenever it is nontrivial, just not efficiency

• You should follow this convention on exercise 14 and beyond

7

Polynomial identity testing

• We are given 𝐹 , where 𝐹 is an arithmetic formula

• Goal: Figure out whether 𝐹 ≡ 0

• If 𝐹 ≡ 0, then 𝐹 Ԧ𝑥 = 0 for all Ԧ𝑥

• Even if 𝐹 ≢ 0, there still might be some Ԧ𝑥 such that 𝐹 Ԧ𝑥 = 0

• How often can this occur?

8

Counting roots

• Fundamental Theorem of Algebra ⇒ Every nonzero degree-𝑑

univariate polynomial has at most 𝑑 real roots

• What about a multivariate polynomial?

9

How many roots can a nonzero degree-𝒅 two-variable polynomial
have?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: Up to 𝑑2A: Up to 𝑑

D: Only finitely many, but there is
no bound in terms of 𝑑

C: It might have infinitely many

Polynomial Identity Lemma

• Even if 𝐹 ≢ 0, it might have infinitely many roots

• Intuition: Roots are nevertheless “rare”

• Let 𝐹 ∶ ℝ𝑘 → ℝ be a multivariate polynomial of degree at most 𝑑 in

each variable individually

• Let 𝑆 ⊆ ℝ and assume 𝑆 is finite

10

Polynomial Identity Lemma: If 𝐹 ≢ 0, then 𝐹−1 0 ∩ 𝑆𝑘 ≤ 𝑑𝑘 ⋅ 𝑆 𝑘−1

𝐹 = 𝑦 − 𝑥2

Proof when 𝑘 = 2: Write 𝐹 𝑥, 𝑦 = σ𝑖=0
𝑑 𝐹𝑖 𝑥 ⋅ 𝑦𝑖 and suppose 𝐹ℓ ≢ 0

𝐹−1 0 ∩ 𝑆2 = ෍

𝑥∈𝑆

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0

= ෍

𝐹ℓ 𝑥 =0

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0 + ෍

𝐹ℓ 𝑥 ≠0

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0

≤ 𝑑 ⋅ 𝑆 + 𝑆 ⋅ 𝑑

= 2𝑑 ⋅ 𝑆

11

Polynomial Identity Lemma: If 𝐹 ≢ 0, then 𝐹−1 0 ∩ 𝑆𝑘 ≤ 𝑑𝑘 ⋅ 𝑆 𝑘−1

Fundamental Theorem
of Algebra

• Polynomial time

• Correctness proof:

• Degree ≤ 𝑑 (prove by induction)

• If 𝐹 ≡ 0, then Pr accept = 1

• If 𝐹 ≢ 0, then by the Polynomial Identity Lemma, we have

Pr accept = Pr 𝐹 Ԧ𝑥 = 0 =
𝐹−1 0 ∩ 𝑆𝑘

𝑆𝑘
≤

𝑑𝑘 ⋅ 𝑆 𝑘−1

𝑆 𝑘
=

𝑑𝑘

3𝑑𝑘
=

1

3
12

Theorem: PIT ∈ BPP Given 𝐹 with 𝑘 variables and 𝑑 leaves:

1. Let 𝑆 = 1, … , 3𝑑𝑘

2. Pick Ԧ𝑥 ∈ 𝑆𝑘 uniformly at random

3. Compute 𝐹 Ԧ𝑥 ∈ ℤ

4. If 𝐹 Ԧ𝑥 = 0, accept, otherwise reject

Polynomial identity testing: Recap

• It is an open question whether PIT ∈ P

• We proved PIT ∈ BPP

• Does that mean we should consider PIT “tractable?”

13

The complexity class BPP

• Definition: BPP is the set of languages 𝑌 ⊆ 0, 1 ∗ such that there

exists a randomized polynomial-time Turing machine that decides 𝑌

with error probability 1/3

14

Amplification lemma

• Suppose a language 𝑌 ⊆ 0, 1 ∗ can be decided by a time-𝑇 Turing

machine 𝑀0 with error probability 1/3

• Let 𝑘 ∈ ℕ be any constant

• As 𝑛 → ∞, the error probability goes to 0 extremely rapidly!

15

Amplification Lemma: There exists a randomized time-𝑇′ Turing machine

that decides 𝑌 with error probability 3−𝑛𝑘
, where 𝑇′ 𝑛 = 𝑂 𝑇 𝑛 ⋅ 𝑛𝑘 .

Proof of the amplification lemma (1 slide)

• For simplicity, assume that for every 𝑤 ∈ 𝑌, we have Pr 𝑀0 accepts 𝑤 = 1

• For 𝑤 ∉ 𝑌, we merely assume Pr 𝑀0 accepts 𝑤 ≤ 1/3

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 = 1

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≤ 1/3 𝑛𝑘
= 1/3𝑛𝑘

16

Given 𝑤 ∈ 0, 1 𝑛:

1) For 𝑖 = 1 to 𝑛𝑘:

a) Simulate 𝑀0 on 𝑤 using fresh random bits. If it rejects, reject.

2) Accept.

Time complexity:

𝑂 𝑇 𝑛 ⋅ 𝑛𝑘

If 𝑀0 uses 𝑅(𝑛) many random bits, then how many random bits
does the new TM use?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑅 𝑛 𝑘

A: 𝑅 𝑛 + 𝑛𝑘

D: Not enough information

B: 𝑅(𝑛) ⋅ 𝑛𝑘

BPP as a model of tractability

• Because of the amplification lemma, languages in BPP should be

considered “tractable”

• A mistake that occurs with probability 1/3100 can be safely ignored

• (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)

17

Extended Church-Turing Thesis

• Is PIT a counterexample?

18

Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Arithmetic formulas
	Slide 3: Polynomial identity testing
	Slide 4: Evaluating an arithmetic formula
	Slide 5: Bound on the magnitude of the output
	Slide 6: Evaluating an arithmetic formula
	Slide 7: Note on standards of rigor
	Slide 8: Polynomial identity testing
	Slide 9: Counting roots
	Slide 10: Polynomial Identity Lemma
	Slide 11
	Slide 12
	Slide 13: Polynomial identity testing: Recap
	Slide 14: The complexity class BPP
	Slide 15: Amplification lemma
	Slide 16: Proof of the amplification lemma (1 slide)
	Slide 17: BPP as a model of tractability
	Slide 18: Extended Church-Turing Thesis

