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Arithmetic formulas

• Definition: A 𝑘-variate arithmetic formula is a rooted binary tree

• Each internal node is labeled with + or ×

• Each leaf is labeled with 0, 1, −1, or a variable among 𝑥1, … , 𝑥𝑘
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Polynomial identity testing

• Problem: Given an arithmetic formula 𝐹, determine whether 𝐹 ≡ 0

• As a language: PIT = 𝐹 ∶ 𝐹 is an arithmetic formula and 𝐹 ≡ 0

• Open Question: Is PIT ∈ P?

• Next 10 slides: We will prove PIT ∈ BPP
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Evaluating an arithmetic formula

• Let 𝐹 be a 𝑘-variate arithmetic formula and let Ԧ𝑥 ∈ ℤ𝑘
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Lemma: Given 𝐹, Ԧ𝑥 , one can compute 𝐹 Ԧ𝑥 ∈ ℤ in polynomial time.

𝑥1 = 2 

𝑥2 = −4 

𝐹 𝑥1, 𝑥2 = −12 

Possible concern: How big can these numbers get?
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Bound on the magnitude of the output

• Let 𝑀 = max 𝑥1 , 𝑥2 , … , 𝑥𝑘 , 2  and let 𝑑 be the number of leaves

• Claim: 𝐹 Ԧ𝑥 ≤ 𝑀𝑑. Proof by induction:

• Base case: 𝑑 = 1: trivial 

• If 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 ⋅ 𝐹𝑅 Ԧ𝑥 , then 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 ⋅ 𝐹𝑅 Ԧ𝑥 ≤ 𝑀𝑑𝐿 ⋅ 𝑀𝑑𝑅 = 𝑀𝑑

• If 𝐹 Ԧ𝑥 = 𝐹𝐿 Ԧ𝑥 + 𝐹𝑅 Ԧ𝑥 , then 𝐹 Ԧ𝑥 ≤ 𝐹𝐿 Ԧ𝑥 + 𝐹𝑅 Ԧ𝑥 ≤ 𝑀𝑑𝐿 + 𝑀𝑑𝑅 ≤ 𝑀𝑑
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Evaluating an arithmetic formula

• Let 𝐹 be a 𝑘-variate arithmetic formula and let Ԧ𝑥 ∈ ℤ𝑘

• Proof sketch: Evaluate the nodes one by one, starting at the leaves

• 𝑀 ≤ 2𝑛 and 𝑑 ≤ 𝑛, so each node outputs 𝑦 such that 𝑦 ≤ 𝑀𝑑 ≤ 2𝑛2

• In other words, 𝑦 is an 𝑂 𝑛2 -bit integer

• There are 𝑂 𝑛  nodes, and we can do arithmetic in polynomial time 
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Lemma: Given 𝐹, Ԧ𝑥 , one can compute 𝐹 Ԧ𝑥 ∈ ℤ in polynomial time.



Note on standards of rigor

• Going forward, when we analyze specific algorithms, we will often assert 

that they run in polynomial time without a rigorous proof

• In each case, one can rigorously prove the time bound by describing a TM 

implementation and reasoning about the motions of the heads…

• But this is tedious

• Note: We still prove correctness whenever it is nontrivial, just not efficiency

• You should follow this convention on exercise 14 and beyond
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Polynomial identity testing

• We are given 𝐹 , where 𝐹 is an arithmetic formula

• Goal: Figure out whether 𝐹 ≡ 0

• If 𝐹 ≡ 0, then 𝐹 Ԧ𝑥 = 0 for all Ԧ𝑥 

• Even if 𝐹 ≢ 0, there still might be some Ԧ𝑥 such that 𝐹 Ԧ𝑥 = 0 

• How often can this occur?
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Counting roots

• Fundamental Theorem of Algebra ⇒ Every nonzero degree-𝑑 

univariate polynomial has at most 𝑑 real roots

• What about a multivariate polynomial?
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How many roots can a nonzero degree-𝒅 two-variable polynomial
have?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: Up to 𝑑2A: Up to 𝑑

D: Only finitely many, but there is
no bound in terms of 𝑑

C: It might have infinitely many



Polynomial Identity Lemma 

• Even if 𝐹 ≢ 0, it might have infinitely many roots 

• Intuition: Roots are nevertheless “rare”

• Let 𝐹 ∶ ℝ𝑘 → ℝ be a multivariate polynomial of degree at most 𝑑 in 

each variable individually

• Let 𝑆 ⊆ ℝ and assume 𝑆 is finite
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Polynomial Identity Lemma: If 𝐹 ≢ 0, then 𝐹−1 0 ∩ 𝑆𝑘 ≤ 𝑑𝑘 ⋅ 𝑆 𝑘−1

𝐹 = 𝑦 − 𝑥2



Proof when 𝑘 = 2:   Write 𝐹 𝑥, 𝑦 = σ𝑖=0
𝑑 𝐹𝑖 𝑥 ⋅ 𝑦𝑖 and suppose 𝐹ℓ ≢ 0

𝐹−1 0 ∩ 𝑆2 = 

𝑥∈𝑆

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0  

= 

𝐹ℓ 𝑥 =0

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0 + 

𝐹ℓ 𝑥 ≠0

𝑦 ∈ 𝑆 ∶ 𝐹 𝑥, 𝑦 = 0

≤ 𝑑 ⋅ 𝑆 + 𝑆 ⋅ 𝑑

= 2𝑑 ⋅ 𝑆  
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Polynomial Identity Lemma: If 𝐹 ≢ 0, then 𝐹−1 0 ∩ 𝑆𝑘 ≤ 𝑑𝑘 ⋅ 𝑆 𝑘−1

Fundamental Theorem 
of Algebra



• Polynomial time 

• Correctness proof:

• Degree ≤ 𝑑 (prove by induction)

• If 𝐹 ≡ 0, then Pr accept = 1

• If 𝐹 ≢ 0, then by the Polynomial Identity Lemma, we have

Pr accept = Pr 𝐹 Ԧ𝑥 = 0 =
𝐹−1 0 ∩ 𝑆𝑘

𝑆𝑘
≤

𝑑𝑘 ⋅ 𝑆 𝑘−1

𝑆 𝑘
=

𝑑𝑘

3𝑑𝑘
=

1

3
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Theorem: PIT ∈ BPP Given 𝐹 with 𝑘 variables and 𝑑 leaves:

1. Let 𝑆 = 1, … , 3𝑑𝑘

2. Pick Ԧ𝑥 ∈ 𝑆𝑘  uniformly at random

3. Compute 𝐹 Ԧ𝑥 ∈ ℤ

4. If 𝐹 Ԧ𝑥 = 0, accept, otherwise reject



Polynomial identity testing: Recap

• It is an open question whether PIT ∈ P

• We proved PIT ∈ BPP

• Does that mean we should consider PIT “tractable?”
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The complexity class BPP

• Definition: BPP is the set of languages 𝑌 ⊆ 0, 1 ∗ such that there 

exists a randomized polynomial-time Turing machine that decides 𝑌 

with error probability 1/3
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Amplification lemma

• Suppose a language 𝑌 ⊆ 0, 1 ∗ can be decided by a time-𝑇 Turing 

machine 𝑀0 with error probability 1/3

• Let 𝑘 ∈ ℕ be any constant

• As 𝑛 → ∞, the error probability goes to 0 extremely rapidly!
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Amplification Lemma: There exists a randomized time-𝑇′ Turing machine 

that decides 𝑌 with error probability 3−𝑛𝑘
, where 𝑇′ 𝑛 = 𝑂 𝑇 𝑛 ⋅ 𝑛𝑘 .



Proof of the amplification lemma (1 slide)

• For simplicity, assume that for every 𝑤 ∈ 𝑌, we have Pr 𝑀0 accepts 𝑤 = 1

• For 𝑤 ∉ 𝑌, we merely assume Pr 𝑀0 accepts 𝑤 ≤ 1/3

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 = 1

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≤ 1/3 𝑛𝑘
= 1/3𝑛𝑘
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Given 𝑤 ∈ 0, 1 𝑛:

1) For 𝑖 = 1 to 𝑛𝑘:

a) Simulate 𝑀0 on 𝑤 using fresh random bits. If it rejects, reject.

2) Accept.

Time complexity:

𝑂 𝑇 𝑛 ⋅ 𝑛𝑘  

If 𝑀0 uses 𝑅(𝑛) many random bits, then how many random bits
does the new TM use?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 𝑅 𝑛 𝑘

A: 𝑅 𝑛 + 𝑛𝑘

D: Not enough information

B: 𝑅(𝑛) ⋅ 𝑛𝑘



BPP as a model of tractability

• Because of the amplification lemma, languages in BPP should be 

considered “tractable”

• A mistake that occurs with probability 1/3100 can be safely ignored

• (Even if you use a deterministic algorithm, can you really be 100% certain 

that the computation was carried out correctly?)
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Extended Church-Turing Thesis

• Is PIT a counterexample?
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Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device 

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.
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