
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

Communication Complexity

2

Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦 using as

little communication as possible

3

Alice holds 𝑥 Bob holds 𝑦

Communication channel

Communication complexity of equality

• EQ𝑛: 0, 1 𝑛 × 0, 1 𝑛 → {0, 1}

EQ𝑛 𝑥, 𝑦 = ቊ
1 if 𝑥 = 𝑦
0 if 𝑥 ≠ 𝑦

4

Theorem: Every deterministic communication protocol that

computes EQ𝑛 has cost at least 𝑛 + 1

Randomized communication complexity

5

Alice holds 𝑥 Bob holds 𝑦

Communication channel

Randomized communication complexity of EQ𝑛

• Let 𝛿 > 0 be any constant

• Randomized protocols are exponentially better than deterministic protocols!

• Proof: Next five slides

6

Theorem: For every 𝑛 ∈ ℕ, there exists a randomized communication

protocol with cost 𝑂 log 𝑛 that computes EQ𝑛 with error probability 𝛿

Randomized protocol for EQ𝑛

• Think of 𝑥, 𝑦 ∈ {0, 1}𝑛 as numbers 𝑥, 𝑦 ∈ {0, 1, … , 2𝑛 − 1}

• Let 𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ ⋯ be the sequence of all prime numbers

• Protocol:

1. Alice picks 𝑖 ∈ 1, 2, … , 𝑛/𝛿 uniformly at random (WLOG, 𝑛/𝛿 is a power of two)

2. Alice sends 𝑖 and 𝑥 mod 𝑝𝑖

3. Bob sends a bit indicating whether 𝑥 mod 𝑝𝑖 = 𝑦 mod 𝑝𝑖

4. If so, they accept, otherwise, they reject
7

Analysis of the protocol: Correctness

• If 𝑥 = 𝑦, then Pr accept = Pr 𝑥 ≡ 𝑦 mod 𝑝𝑖 = 1

• If 𝑥 ≠ 𝑦, then Pr accept = Pr 𝑥 ≡ 𝑦 mod 𝑝𝑖 = Pr 𝑝𝑖 divides 𝑥 − 𝑦

• Let BAD be the set of prime numbers that divide 𝑥 − 𝑦

• 2 BAD ≤ ς𝑝∈BAD 𝑝 ≤ 𝑥 − 𝑦 < 2𝑛

• Pr accept = Pr 𝑝𝑖 ∈ BAD ≤
BAD
𝑛/𝛿

<
𝑛

𝑛/𝛿
= 𝛿

8

Protocol:

1. Pick 𝑖 ∈ 1, 2, … , 𝑛/𝛿 u.a.r.

2. Send 𝑖 and 𝑥 mod 𝑝𝑖

3. Check whether 𝑥 ≡ 𝑦 mod 𝑝𝑖

Analysis of the protocol: Efficiency

• Sending 𝑖 costs 𝑂 log 𝑛 bits of communication

• Sending 𝑥 mod 𝑝𝑖 costs 𝑂 log 𝑝𝑖 bits of communication

• How big is 𝑝𝑖 (the 𝑖-th prime)?

• Therefore, log 𝑝𝑖 = log 𝑂 𝑛 ⋅ log 𝑛 = log 𝑜 𝑛2 = 𝑂 log 𝑛

• All that remains is to prove Chebyshev’s Estimate… (Next two slides)

9

Chebyshev’s Estimate: Let 𝑝𝑘 be the 𝑘-th prime. Then 𝑝𝑘 = 𝑂 𝑘 ⋅ log 𝑘 .

Protocol:

1. Pick 𝑖 ∈ 1, 2, … , 𝑛/𝛿 u.a.r.

2. Send 𝑖 and 𝑥 mod 𝑝𝑖

3. Check whether 𝑥 ≡ 𝑦 mod 𝑝𝑖

Step 1: Legendre’s Formula

• Proof: Among the numbers 1, 2, 3, … , 𝑀:

• 𝑀/𝑝 of them are multiples of 𝑝

• 𝑀/𝑝2 of them are multiples of 𝑝2

• 𝑀/𝑝3 of them are multiples of 𝑝3

• Etc.
10

Legendre’s Formula: For any 𝑀 ∈ ℕ and any prime 𝑝, the exponent of 𝑝 in

the prime factorization of 𝑀! is precisely σ𝑖=1
∞ 𝑀/𝑝𝑖 .

Proof of Chebyshev’s Estimate

• Let 𝑀 = 2𝑘 ⋅ log 𝑘 ≤ 0.5 ⋅ 𝑘2 and let 𝑝1
𝑒1 ⋅ 𝑝2

𝑒2 ⋯ 𝑝ℓ
𝑒ℓ = 2𝑀

𝑀
=

2𝑀 !

𝑀! 2

Legendre ⇒ 𝑒𝑗 = ෍

𝑖=1

∞
2𝑀

𝑝𝑗
𝑖

− 2
𝑀

𝑝𝑗
𝑖

≤ log𝑝𝑗
2𝑀 , so 𝑝

𝑗

𝑒𝑗 ≤ 2𝑀

• Therefore, 2𝑀 ≤ 2𝑀
𝑀

≤ 2𝑀 ℓ = 2ℓ⋅log 2𝑀 , i.e., ℓ ≥ 𝑀/ log 2𝑀 ≥ 𝑘

• Therefore, 𝑝𝑘 ≤ 𝑝ℓ ≤ 2𝑀 = 𝑂 𝑘 ⋅ log 𝑘

11

Randomized communication complexity of EQ𝑛

• Let 𝛿 > 0 be any constant

• Randomized protocols are exponentially better than deterministic protocols!

12

Theorem: For every 𝑛 ∈ ℕ, there exists a randomized communication

protocol with cost 𝑂 log 𝑛 that computes EQ𝑛 with error probability 𝛿

Which of the following best describes the protocol?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: The amount of communication
is rarely more than 𝑂 log 𝑛

A: The protocol succeeds on most
pairs of inputs

D: It is likely that for every pair of
inputs, the protocol succeeds

C: For every pair of inputs, the
protocol is likely to succeed

Which problems

can be solved

through computation?

13

Randomized Turing machines

14

1 1 0Input tape

Randomness tape

⊔ ⊔1⊔

⊔

Randomized Turing machines

• Let 𝑇: ℕ → ℕ be a function (time bound)

• Definition: A randomized time-𝑇 Turing machine is a two-tape Turing machine

𝑀 such that for every 𝑛 ∈ ℕ, every 𝑤 ∈ 0, 1 𝑛, and every 𝑢 ∈ 0, 1 𝑇 𝑛 , if we

initialize 𝑀 with 𝑤 on tape 1 and 𝑢 on tape 2, then it halts within 𝑇 𝑛 steps

• Interpretation: 𝑤 is the input and 𝑢 is the coin tosses

• (Giving 𝑀 more than 𝑇 𝑛 random bits would be pointless)

15

Acceptance probability

• Let 𝑀 be a randomized Turing machine and let 𝑤 ∈ 0, 1 ∗

• To run 𝑀 on 𝑤, we select 𝑢 ∈ 0, 1 𝑇 𝑛 uniformly at random and

initialize 𝑀 with 𝑤 on tape 1 and 𝑢 on tape 2

Pr 𝑀 accepts 𝑤 =
𝑢 ∶ 𝑀 accepts 𝑤 when tape 2 is initialized with 𝑢

2𝑇 𝑛

16

Randomized TMs: Deciding a language

• Let 𝑀 be a randomized time-𝑇 Turing machine for some 𝑇: ℕ → ℕ

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝛿 ∈ 0, 1

• We say 𝑀 decides 𝑌 with error probability 𝛿 if for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≥ 1 − 𝛿

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≤ 𝛿

17

The complexity class BPP

• Definition: BPP is the set of languages 𝑌 ⊆ 0, 1 ∗ such that there

exists a randomized polynomial-time Turing machine that decides 𝑌

with error probability 1/3

• “Bounded-error Probabilistic Polynomial-time”

18

Example: High school algebra

• “Expand and simplify: 𝑥 + 1 ⋅ 𝑥 − 1 ”

• How difficult is this type of exercise?

19

This type of expression is

called an arithmetic formula

Arithmetic formulas

• Definition: A 𝑘-variate arithmetic formula is a rooted binary tree

• Each internal node is labeled with + or ×

• Each leaf is labeled with 0, 1, −1, or a variable among 𝑥1, … , 𝑥𝑘

• It computes 𝐹: ℝ𝑘 → ℝ

• E.g., 𝐹 𝑥1, 𝑥2 = 𝑥1 − 𝑥2 ⋅ 𝑥1 + 𝑥2

20

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1

Polynomial identity testing

• Problem: Given an arithmetic formula 𝐹, determine whether 𝐹 ≡ 0

• As a language: PIT = 𝐹 ∶ 𝐹 is an arithmetic formula and 𝐹 ≡ 0

• High school algorithm: Expand 𝐹 into monomials, then simplify by

canceling like terms

21

What is the time complexity of this algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑂 1

A: poly 𝑛

D: ∞

B: 2Ω 𝑛

Example: Polynomial identity testing

• Given: 𝐹 = 𝑎 − 1 ⋅ 1 + 𝑏 ⋅ 𝑎 − 𝑐 ⋅ 1 − 𝑑 ⋅ 𝑏 − 𝑒 + 𝑏 + 1 ⋅ 𝑑 − 1 ⋅ 𝑏 − 𝑒 ⋅ 𝑐 − 𝑎 ⋅ 1 − 𝑎

• Expand:

𝐹 ≡ 𝑎2𝑏 − 𝑎2𝑏𝑒 − 𝑎2𝑑𝑏 + 𝑎2𝑑𝑏𝑒 − 𝑎𝑐𝑏 + 𝑎𝑐𝑏𝑒 + 𝑎𝑐𝑑𝑏 − 𝑎𝑐𝑑𝑏𝑒 + 𝑎2𝑏2 − 𝑎2𝑏2𝑒 − 𝑎2𝑏𝑑𝑏 + 𝑎2𝑏𝑑𝑏𝑒

 − 𝑎𝑏𝑐2 + 𝑎𝑏𝑐2𝑒 + 𝑎𝑏𝑐𝑑𝑏 − 𝑎𝑏𝑐𝑑𝑏𝑒 − 𝑎𝑏 + 𝑎𝑏𝑒 + 𝑎𝑑𝑏 − 𝑎𝑑𝑏𝑒 + 𝑐𝑏 − 𝑐𝑏𝑒 − 𝑐𝑑𝑏 + 𝑐𝑑𝑏𝑒 − 𝑏2

 + 𝑏2𝑒 + 𝑏𝑑𝑏 − 𝑏𝑑𝑏𝑒 + 𝑏2𝑐 − 𝑏2𝑐𝑒 − 𝑏𝑐𝑑 + 𝑏𝑐𝑑𝑒 + 𝑏2𝑑𝑐 − 𝑏2𝑑𝑐𝑎 − 𝑏𝑑𝑒𝑐 + 𝑏𝑑𝑒𝑐𝑎 − 𝑏2𝑐 + 𝑏2𝑐𝑎

 + 𝑏𝑒𝑐 − 𝑏𝑒𝑐𝑎 + 𝑏𝑑𝑐 − 𝑏𝑑𝑐𝑎 − 𝑑𝑒𝑐 + 𝑑𝑒𝑐𝑎 − 𝑏𝑐 + 𝑏𝑐𝑎 + 𝑒𝑐 − 𝑒𝑐𝑎 − 𝑎𝑏2𝑑𝑐 + 𝑎𝑏2𝑑𝑐𝑎 + 𝑎𝑏𝑑𝑒𝑐

 − 𝑎𝑏𝑑𝑒𝑐𝑎 + 𝑎𝑏2𝑐 − 𝑎𝑏2𝑐𝑎 − 𝑎𝑏𝑒𝑐 + 𝑎𝑏𝑒𝑐𝑎 − 𝑎𝑏𝑑𝑐 + 𝑎𝑏𝑑𝑐𝑎 + 𝑎𝑑𝑒𝑐 − 𝑎𝑑𝑒𝑐𝑎 + 𝑎𝑏𝑐 − 𝑎𝑏𝑐𝑎 − 𝑎𝑒𝑐

 + 𝑎𝑒𝑐𝑎

• Everything cancels out: 𝐹 ≡ 0

22

Polynomial identity testing

• Expanding 𝐹 takes 2Ω 𝑛 time in some cases

• E.g., 𝐹 = 𝑥 + 𝑦 ⋅ 𝑥 + 𝑦 ⋅ 𝑥 + 𝑦 ⋯ 𝑥 + 𝑦

• Open Question: Is PIT ∈ P?

• Next 10 slides: We will prove PIT ∈ BPP

23

Evaluating an arithmetic formula

• Let 𝐹 be a 𝑘-variate arithmetic formula and let Ԧ𝑥 ∈ ℤ𝑘

24

Lemma: Given 𝐹, Ԧ𝑥 , one can compute 𝐹 Ԧ𝑥 ∈ ℤ in polynomial time.

𝑥1 = 2

𝑥2 = −4

𝐹 𝑥1, 𝑥2 = −12
2 −42

−4

6 −2

−12

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1

4

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: Communication Complexity
	Slide 3: Communication complexity
	Slide 4: Communication complexity of equality
	Slide 5: Randomized communication complexity
	Slide 6: Randomized communication complexity of subscript base , EQ , end base , sub n
	Slide 7: Randomized protocol for subscript base , EQ , end base , sub n
	Slide 8: Analysis of the protocol: Correctness
	Slide 9: Analysis of the protocol: Efficiency
	Slide 10: Step 1: Legendre’s Formula
	Slide 11: Proof of Chebyshev’s Estimate
	Slide 12: Randomized communication complexity of subscript base , EQ , end base , sub n
	Slide 13: Which problems can be solved through computation?
	Slide 14: Randomized Turing machines
	Slide 15: Randomized Turing machines
	Slide 16: Acceptance probability
	Slide 17: Randomized TMs: Deciding a language
	Slide 18: The complexity class BPP
	Slide 19: Example: High school algebra
	Slide 20: Arithmetic formulas
	Slide 21: Polynomial identity testing
	Slide 22: Example: Polynomial identity testing
	Slide 23: Polynomial identity testing
	Slide 24: Evaluating an arithmetic formula

