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Midterm exam

• Midterm exam will be in class on Wednesday, April 23

• To prepare for the midterm, you only need to study the material prior 

to this point

• The midterm will be about decidability, undecidability, time 

complexity, and P
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Robustness of P, revisited

• Let 𝑌 ⊆ 0, 1 ∗. If 𝑌 ∉ P, then 𝑌 cannot be decided by…

• A poly-time one-tape Turing machine

• A poly-time multi-tape Turing machine

• A poly-time word RAM program

• OBJECTION: “This still leaves open the possibility that I could somehow 

build a device that decides 𝑌 in polynomial time.”
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Extended Church-Turing Thesis

• If it were true, the thesis would justify studying P

• But the thesis is probably false!

• Two key challenges: Randomized Computation and Quantum Computation
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Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device 

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.



Randomized computation

• Researchers often use randomness to answer questions

• Random sampling for opinion polls

• Randomized controlled trials in science/medicine

• What if we incorporate this ability into our computational model?
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Randomized computation

• Eventually, we will define and study randomized Turing machines

• First, to build intuition, let’s study the role of randomness in a 

different situation
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Communication Complexity
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Communication complexity

• Goal: Compute 𝑓 𝑥, 𝑦  using as 

little communication as possible

• In each round, one party sends a 

single bit; the other party listens

• At the end, both parties 

announce 𝑓 𝑥, 𝑦
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Alice holds 𝑥 Bob holds 𝑦

Communication channel



The equality function

• We will focus on the case 𝑓 = EQ𝑛

• EQ𝑛: 0, 1 𝑛 × 0, 1 𝑛 → {0, 1}

• Definition:

EQ𝑛 𝑥, 𝑦 = ቊ
1 if 𝑥 = 𝑦
0 if 𝑥 ≠ 𝑦

 

• “Does your copy of the database match my copy?”
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Protocols for equality
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𝑛 + 1 bits of communication

2𝑛 bits of communication 
(in the worst case)

Protocol A:

1) Alice sends 𝑥 ∈ 0, 1 𝑛

2) Bob sends EQ𝑛 𝑥, 𝑦 ∈ 0, 1

Protocol B:

1) For 𝑖 = 1 to 𝑛:

a) Alice sends 𝑥𝑖

b) Bob sends a bit indicating whether 𝑥𝑖 = 𝑦𝑖



Communication complexity of equality

• Is there a better protocol?

• Before we can prove it, we must clarify how we model communication 

protocols mathematically
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Theorem: Every deterministic communication protocol for EQ𝑛 

uses at least 𝑛 + 1 bits of communication in the worst case



Communication protocol model

• Idea: We model a communication protocol as a binary tree

• We start at the root node

• Someone transmits a zero ⇔ We move to the left child

• Someone transmits a one ⇔ We move to the right child

• (Alice and Bob both know where we are in the tree)
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Example protocol tree
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Alice sends
𝑥1

Bob sends
1 − 𝑦1

Bob sends
𝑦1

Reject
Alice sends

𝑥2
Reject

Alice sends
𝑥2

0

0 0

1

1 1

⋮ ⋮ ⋮ ⋮



Rigorously defining communication protocols

• A deterministic communication protocol with 𝑛-bit inputs is a rooted 

binary tree 𝜋 with the following features

• The vertex set 𝑉 is partitioned into 𝑉 = 𝑉Alice ∪ 𝑉Bob ∪ 𝑉Accept ∪ 𝑉Reject

• Each vertex 𝑣 ∈ 𝑉Alice ∪ 𝑉Bob has two children (ℓ and 𝑟) and is labeled with a 

function 𝛿𝑣: {0, 1}𝑛 → {ℓ, 𝑟}

• Each vertex 𝑣 ∈ 𝑉Accept ∪ 𝑉Reject has zero children
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Rigorously defining communication protocols

• For 𝑥, 𝑦 ∈ {0, 1}𝑛, we define leaf 𝑥, 𝑦  as follows

• Let 𝑣0 = the root vertex

• If 𝑣𝑖 ∈ 𝑉Alice, then let 𝑣𝑖+1 = 𝛿𝑣𝑖
𝑥

• If 𝑣𝑖 ∈ 𝑉Bob, then let 𝑣𝑖+1 = 𝛿𝑣𝑖
𝑦

• If 𝑣𝑖 ∈ 𝑉Accept ∪ 𝑉Reject, then let leaf 𝑥, 𝑦 = 𝑣𝑖

• We say that 𝜋 accepts 𝑥, 𝑦  if leaf 𝑥, 𝑦 ∈ 𝑉Accept

• We say that 𝜋 rejects 𝑥, 𝑦  if leaf 𝑥, 𝑦 ∈ 𝑉Reject
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In this model, what happens if Alice and Bob speak at the same time?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: Both of the messages are
successfully transmitted

B: Only one of the messages is
successfully transmitted

D: Neither message is successfully
transmitted

A: Trick question. In this model,
they never speak simultaneously



Communication complexity

• We say that 𝜋 computes 𝑓 if for every 𝑥, 𝑦 ∈ 0, 1 𝑛,

• If 𝑓 𝑥, 𝑦 = 1, then 𝜋 accepts 𝑥, 𝑦

• If 𝑓 𝑥, 𝑦 = 0, then 𝜋 rejects 𝑥, 𝑦

• The cost of the communication protocol 𝜋 is the depth of the tree, i.e., the 

length of the longest path from the root to the leaf

• (Cost = number of rounds = number of bits of communication)
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Rectangle lemma

• Let 𝜋 be any communication protocol with 𝑛-bit inputs

• Let 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ {0, 1}𝑛 and let 𝑣 be any leaf

• Proof (sketch): Let 𝑣0, 𝑣1, … , 𝑣𝑇 be the vertices from the root to 𝑣

• If 𝑣𝑖 ∈ 𝑉𝐴, we must have 𝛿𝑣𝑖
𝑥 = 𝛿𝑣𝑖

𝑥′ = 𝑣𝑖+1. Similarly if 𝑣𝑖 ∈ 𝑉𝐵
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Rectangle Lemma: If leaf 𝑥, 𝑦 = leaf 𝑥′, 𝑦′ = 𝑣,

then leaf 𝑥, 𝑦′ = leaf 𝑥′, 𝑦 = 𝑣

𝑥, 𝑦 𝑥′, 𝑦

𝑥, 𝑦′ 𝑥′, 𝑦′



Communication complexity of equality

• Proof: Let 𝜋 be any communication protocol that computes EQ𝑛

• Assume WLOG that every leaf is at the same depth 𝑚

• Our job is to prove that 𝑚 ≥ 𝑛 + 1
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Theorem: Every deterministic communication protocol that 

computes EQ𝑛 has cost at least 𝑛 + 1



Communication complexity of EQ𝑛

• If 𝑥 ≠ 𝑦, then leaf 𝑥, 𝑥 ≠ leaf 𝑥, 𝑦

• By the rectangle lemma, it follows that leaf 𝑥, 𝑥 ≠ leaf 𝑦, 𝑦

• Therefore, 𝑉Accept ≥ 2𝑛

• Meanwhile, 𝑉Reject ≥ 1

• Therefore, 2𝑚 = 𝑉Accept ∪ 𝑉Reject > 2𝑛, hence 𝑚 ≥ 𝑛 + 1
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𝑥, 𝑥 𝑥, 𝑦

𝑦, 𝑥 𝑦, 𝑦



Communication complexity of EQ𝑛

• We just proved that computing EQ𝑛 requires 𝑛 + 1 bits of 

communication

• However, there is a loophole!

• Our impossibility proof only applies to deterministic protocols!
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Randomized communication complexity

• In a randomized communication 

protocol, Alice and Bob are 

permitted to make decisions 

based on coin tosses
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Alice holds 𝑥 Bob holds 𝑦

Communication channel



Randomized communication protocols

• Mathematically, we model a randomized communication protocol with 𝑛-bit 

inputs as a deterministic communication protocol with 𝑛 + 𝑟 -bit inputs for 

some 𝑟 ≥ 0

• Alice holds 𝑥𝑢, where 𝑥 ∈ 0, 1 𝑛 and 𝑢 ∈ 0, 1 𝑟

• Bob holds 𝑦𝑤, where 𝑦 ∈ 0, 1 𝑛 and 𝑤 ∈ 0, 1 𝑟

• Interpretation: 𝑥, 𝑦 are the “actual inputs,” and 𝑢, 𝑤 are the coin tosses
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Randomized protocols: Accepting/rejecting

• Experiment: Pick 𝑢, 𝑤 ∈ 0, 1 𝑟  independently and uniformly at random

• We say that 𝜋 accepts 𝑥, 𝑦  if 𝜋 accepts 𝑥𝑢, 𝑦𝑤

• We say that 𝜋 rejects 𝑥, 𝑦  if 𝜋 rejects 𝑥𝑢, 𝑦𝑤

Pr 𝜋 accepts 𝑥, 𝑦 =
𝑢, 𝑤 ∶ 𝜋 accepts 𝑥𝑢, 𝑦𝑤

22𝑟
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Randomized protocols: Computing a function

• Let 𝑓: 0, 1 𝑛 × 0, 1 𝑛 → 0, 1  and let 𝛿 ∈ 0, 1

• We say that 𝜋 computes 𝑓 with error probability 𝛿 if for every 

𝑥, 𝑦 ∈ 0, 1 𝑛:

• If 𝑓 𝑥, 𝑦 = 1, then Pr 𝜋 accepts 𝑥, 𝑦 ≥ 1 − 𝛿

• If 𝑓 𝑥, 𝑦 = 0, then Pr 𝜋 accepts 𝑥, 𝑦 ≤ 𝛿
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Randomized communication complexity of EQ𝑛

• Let 𝛿 > 0 be any constant

• Randomized protocols are exponentially better than deterministic protocols!
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Theorem: For every 𝑛 ∈ ℕ, there exists a randomized communication 

protocol with cost 𝑂 log 𝑛  that computes EQ𝑛 with error probability 𝛿
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