CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

Midterm exam

- Midterm exam will be in class on Wednesday, April 23
- To prepare for the midterm, you only need to study the material prior to this point
- The midterm will be about decidability, undecidability, time complexity, and P

Robustness of P, revisited

- Let $Y \subseteq \{0, 1\}^*$. If $Y \notin P$, then Y cannot be decided by...
 - A poly-time one-tape Turing machine
 - A poly-time multi-tape Turing machine
 - A poly-time word RAM program
- **OBJECTION:** "This still leaves open the possibility that I could somehow

build a device that decides *Y* in polynomial time."

Extended Church-Turing Thesis

Extended Church-Turing Thesis:

For every $Y \subseteq \{0, 1\}^*$, it is physically possible to build a device

that decides Y in polynomial time if and only if $Y \in P$.

- If it were true, the thesis would justify studying P
- But the thesis is probably false!
- Two key challenges: Randomized Computation and Quantum Computation

Randomized computation

- Researchers often use randomness to answer questions
 - Random sampling for opinion polls
 - Randomized controlled trials in science/medicine
- What if we incorporate this ability into our computational model?

Randomized computation

- Eventually, we will define and study randomized Turing machines
- First, to build intuition, let's study the role of randomness in a different situation

Communication Complexity

Communication complexity

- Goal: Compute f(x, y) using as
 little communication as possible
- In each round, one party sends a single bit; the other party listens
- At the end, both parties announce f(x, y)

Alice holds *x*

The equality function

- We will focus on the case $f = EQ_n$
- $EQ_n: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$
- Definition:

$$EQ_n(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

• "Does your copy of the database match my copy?"

Protocols for equality

Protocol A:

- 1) Alice sends $x \in \{0, 1\}^n$
- 2) Bob sends $EQ_n(x, y) \in \{0, 1\}$

n+1 bits of communication

Protocol B:

- 1) For i = 1 to n:
 - a) Alice sends x_i

b) Bob sends a bit indicating whether $x_i = y_i$

2n bits of communication (in the worst case)

Communication complexity of equality

• Is there a better protocol?

Theorem: Every deterministic communication protocol for EQ_n uses at least n + 1 bits of communication in the worst case

• Before we can prove it, we must clarify how we model communication protocols mathematically

Communication protocol model

- Idea: We model a communication protocol as a binary tree
- We start at the root node
- Someone transmits a zero ⇔ We move to the left child
- Someone transmits a one ⇔ We move to the right child
- (Alice and Bob both know where we are in the tree)

Rigorously defining communication protocols

- A deterministic communication protocol with n-bit inputs is a rooted binary tree π with the following features
 - The vertex set V is partitioned into $V = V_{Alice} \cup V_{Bob} \cup V_{Accept} \cup V_{Reject}$
 - Each vertex $v \in V_{Alice} \cup V_{Bob}$ has two children (ℓ and r) and is labeled with a function $\delta_v: \{0, 1\}^n \to \{\ell, r\}$
 - Each vertex $v \in V_{\text{Accept}} \cup V_{\text{Reject}}$ has zero children

- If $v_i \in V_{Alice}$, then let $v_{i+1} = \delta_{v_i}(x)$
- If $v_i \in V_{Bob}$, then let $v_{i+1} = \delta_{v_i}(y)$
- If $v_i \in V_{\text{Accept}} \cup V_{\text{Reject}}$, then let $\text{leaf}(x, y) = v_i$
- We say that π accepts (x, y) if leaf $(x, y) \in V_{Accept}$
- We say that π rejects (x, y) if leaf $(x, y) \in V_{\text{Reject}}$

Communication complexity

- We say that π computes f if for every $x, y \in \{0, 1\}^n$,
 - If f(x, y) = 1, then π accepts (x, y)
 - If f(x, y) = 0, then π rejects (x, y)
- The cost of the communication protocol π is the depth of the tree, i.e., the length of the longest path from the root to the leaf
- (Cost = number of rounds = number of bits of communication)

Rectangle lemma

- Let π be any communication protocol with n-bit inputs
- Let $x, x', y, y' \in \{0, 1\}^n$ and let v be any leaf

Rectangle Lemma: If leaf(x, y) = leaf(x', y') = v, then leaf(x, y') = leaf(x', y) = v

- **Proof (sketch):** Let v_0, v_1, \dots, v_T be the vertices from the root to v
- If $v_i \in V_A$, we must have $\delta_{v_i}(x) = \delta_{v_i}(x') = v_{i+1}$. Similarly if $v_i \in V_B$

Communication complexity of equality

Theorem: Every deterministic communication protocol that computes EQ_n has cost at least n + 1

- **Proof:** Let π be any communication protocol that computes EQ_n
- Assume WLOG that every leaf is at the same depth m
- Our job is to prove that $m \ge n+1$

Communication complexity of EQ_n

- If $x \neq y$, then leaf $(x, x) \neq leaf(x, y)$
- By the rectangle lemma, it follows that $leaf(x, x) \neq leaf(y, y)$
- Therefore, $\left|V_{\text{Accept}}\right| \geq 2^n$
- Meanwhile, $|V_{\text{Reject}}| \ge 1$
- Therefore, $2^m = \left| V_{\text{Accept}} \cup V_{\text{Reject}} \right| > 2^n$, hence $m \ge n+1$

Communication complexity of EQ_n

- We just proved that computing EQ_n requires n + 1 bits of communication
- However, there is a loophole!
- Our impossibility proof only applies to deterministic protocols!

Randomized communication complexity

 In a randomized communication protocol, Alice and Bob are permitted to make decisions based on coin tosses

Alice holds *x*

Bob holds *y*

Randomized communication protocols

- Mathematically, we model a randomized communication protocol with n-bit inputs as a deterministic communication protocol with (n + r)-bit inputs for some $r \ge 0$
- Alice holds xu, where $x \in \{0, 1\}^n$ and $u \in \{0, 1\}^r$
- Bob holds yw, where $y \in \{0, 1\}^n$ and $w \in \{0, 1\}^r$
- Interpretation: x, y are the "actual inputs," and u, w are the coin tosses

Randomized protocols: Accepting/rejecting

- Experiment: Pick $u, w \in \{0, 1\}^r$ independently and uniformly at random
- We say that π accepts (x, y) if π accepts (xu, yw)
- We say that π rejects (x, y) if π rejects (xu, yw)

$$\Pr[\pi \operatorname{accepts} (x, y)] = \frac{|\{(u, w) : \pi \operatorname{accepts} (xu, yw)\}|}{2^{2r}}$$

Randomized protocols: Computing a function

- Let $f: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ and let $\delta \in [0, 1]$
- We say that π computes f with error probability δ if for every $x, y \in \{0, 1\}^n$:
 - If f(x, y) = 1, then $\Pr[\pi \operatorname{accepts} (x, y)] \ge 1 \delta$
 - If f(x, y) = 0, then $\Pr[\pi \operatorname{accepts} (x, y)] \le \delta$

Randomized communication complexity of EQ_n

- Let $\delta>0$ be any constant

Theorem: For every $n \in \mathbb{N}$, there exists a randomized communication protocol with cost $O(\log n)$ that computes EQ_n with error probability δ

• Randomized protocols are exponentially better than deterministic protocols!