CMSC 28100

Introduction to Complexity Theory

Spring 2025 Instructor: William Hoza

1

Which problems can be solved

through computation?

Word RAM model

 Word RAM time complexity closely matches time complexity "in practice" on ordinary

computers

• Some version of the word RAM model is typically assumed (implicitly or explicitly) in algorithms courses and the computing industry

Robustness of P

• Let $Y \subseteq \{0,1\}^*$

Theorem: If there is a word RAM program that decides Y in time poly(n), then there is a Turing machine that decides Y in time poly(n).

• Proof omitted

Fine-grained vs. coarse-grained complexity

- If/when you care about the distinction between O(n) time and $O(n^2)$ time, you should probably use the word RAM model
- In this course:
 - We focus on the distinction between polynomial time and exponential time
 - We can therefore continue using the Turing machine model

Which problems

can be solved

through computation?

Which languages are in P?

Which languages are not in P?

Intractability

- How can we prove that certain languages are outside P?
- Certainly HALT \notin P
- Is every decidable language in P?
 - This would mean that every algorithm can be modified to make it run in polynomial time!

Intractability vs. undecidability

Intractability vs. undecidability

Theorem: There exists $Y \subseteq \{0, 1\}^*$ such that Y is decidable, but $Y \notin P$.

- **Proof**: Let $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$
- On the next three slides, we will show that Y is decidable and $Y \notin P$

Proof that Y is decidable

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$

• An algorithm that decides *Y*:

Given the input $\langle M \rangle$:

- 1. Simulate *M* on $\langle M \rangle$ for $2^{|\langle M \rangle|}$ steps
- 2. If it rejects within that time, accept
- 3. Otherwise, reject

- Let $T: \mathbb{N} \to \mathbb{N}$ be the time complexity of R, and let $n = |\langle R \rangle|$
- Does R accept $\langle R \rangle$? No, because that would imply $\langle R \rangle \notin Y$
- Does R reject $\langle R \rangle$ within 2^n steps? No, because that would imply $\langle R \rangle \in Y$
- Only remaining possibility: R rejects $\langle R \rangle$ after more than 2^n steps
- Therefore, $T(n) > 2^n$... but this does not imply $T(n) \neq \text{poly}(n)$ 😵

Proof that $Y \notin P$

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$

- Let *R* be a TM that decides *Y*, with time complexity $T: \mathbb{N} \to \mathbb{N}$
- Add dummy states! For infinitely many values of n, there exists a TM R_n such that R_n decides Y, R_n has time complexity T, and $|\langle R_n \rangle| = n$
- Each R_n must reject $\langle R_n \rangle$ after more than 2^n steps
 - Otherwise, it would get trapped in a liar paradox
- Therefore, $T(n) > 2^n$ for infinitely many values of n, hence $T(n) \neq poly(n)$

The Time Hierarchy Theorem

• Using the same proof idea, we can prove a more general theorem:

Time Hierarchy Theorem: For every* function $T: \mathbb{N} \to \mathbb{N}$ such that $T(n) \ge n$, there is a language $Y \in \text{TIME}(T^4)$ such that $Y \notin \text{TIME}(o(T))$.

- *assuming T is a "reasonable" time complexity bound. We will come back to this
- "TIME(o(T))" means the set of languages that are decidable in time o(T)
- "Given more time, we can solve more problems"

Proof of the Time Hierarchy Theorem

- Let $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$
- On the next four slides, we will prove:
 - $Y \in \text{TIME}(T^4)$
 - $Y \notin \text{TIME}(o(T))$

Proof that $Y \in \text{TIME}(T^4)$

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

• An algorithm that decides *Y*:

Given the input $\langle M \rangle$:

- 1. Simulate *M* on $\langle M \rangle$ for $T(|\langle M \rangle|)$ steps
- 2. If it rejects within that time, accept
- 3. Otherwise, reject

• Time complexity in the TM model?

Proof that $Y \in \text{TIME}(T^4)$

- Let $n = |\langle M \rangle|$
- Each simulated step takes O(n) actual steps
- Total time complexity of multi-tape machine: $O(T(n) \cdot n)$
- After converting to a one-tape machine: $O(T(n)^2 \cdot n^2) = O(T(n)^4)$

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

Time-constructible functions

- **Definition:** A function $T: \mathbb{N} \to \mathbb{N}$ is time-constructible if there exists a multitape Turing machine *M* such that
 - Given input 1^n , M halts with $1^{T(n)}$ written on tape 2
 - *M* has time complexity O(T(n))
- Our proof that $Y \in TIME(T^4)$ works assuming T is time-constructible
- All "reasonable" time complexity bounds (e.g., 5n or n^2 or 2^n) are time-constructible

Time Hierarchy Theorem

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

Time Hierarchy Theorem: For every time-constructible $T: \mathbb{N} \to \mathbb{N}$,

there is a language $Y \in \text{TIME}(T^4)$ such that $Y \notin \text{TIME}(o(T))$.

- We showed $Y \in TIME(T^4)$
- We still need to show $Y \notin \text{TIME}(o(T))$

Proof that $Y \notin \text{TIME}(o(T))$ $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Let R be a TM that decides Y, with time complexity $T': \mathbb{N} \to \mathbb{N}$
- Add dummy states! For infinitely many values of n, there exists a TM R_n such that R_n decides Y, R_n has time complexity T', and $|\langle R_n \rangle| = n$
- Each R_n must reject $\langle R_n \rangle$ after more than T(n) steps
 - Otherwise, it would get trapped in a liar paradox
- Therefore, T'(n) > T(n) for infinitely many values of n, hence T' is not o(T)