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Which problems

can be solved

through computation?

2



Word RAM model

• Word RAM time complexity

closely matches time complexity

“in practice” on ordinary

computers

• Some version of the word RAM model is typically assumed (implicitly or 

explicitly) in algorithms courses and the computing industry
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Robustness of P

• Let 𝑌 ⊆ 0, 1 ∗

• Proof omitted
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Theorem: If there is a word RAM program that decides 𝑌 in time poly 𝑛 , 

then there is a Turing machine that decides 𝑌 in time poly 𝑛 .



Fine-grained vs. coarse-grained complexity

• If/when you care about the distinction between 𝑂 𝑛  time and 𝑂 𝑛2  

time, you should probably use the word RAM model

• In this course:

• We focus on the distinction between polynomial time and exponential time

• We can therefore continue using the Turing machine model

5



Which problems

can be solved

through computation?
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Which languages are in P?
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Which languages are not in P?
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Intractability

• How can we prove that certain languages are outside P?

• Certainly HALT ∉ P

• Is every decidable language in P?

• This would mean that every algorithm can be modified to make it run in 

polynomial time!
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Intractability vs. undecidability

10

P

Decidable languages

All languages

PALINDROMES

HALT

???



Intractability vs. undecidability

• Proof: Let 𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 2 𝑀  steps

• On the next three slides, we will show that 𝑌 is decidable and 𝑌 ∉ P
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Theorem: There exists 𝑌 ⊆ 0, 1 ∗ such that 𝑌 is decidable, but 𝑌 ∉ P.



Proof that 𝑌 is decidable

• An algorithm that decides 𝑌:
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Given the input 𝑀 :

1. Simulate 𝑀 on 𝑀  for 2 𝑀  steps

2. If it rejects within that time, accept

3. Otherwise, reject

𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 2 𝑀  steps



𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 2 𝑀  stepsProof that 𝑌 ∉ P

• Let 𝑅 be a TM that decides 𝑌

• Let 𝑇: ℕ → ℕ be the time complexity of 𝑅, and let 𝑛 = 𝑅

• Does 𝑅 accept 𝑅 ? No, because that would imply 𝑅 ∉ 𝑌

• Does 𝑅 reject 𝑅  within 2𝑛 steps? No, because that would imply 𝑅 ∈ 𝑌

• Only remaining possibility: 𝑅 rejects 𝑅  after more than 2𝑛 steps

• Therefore, 𝑇 𝑛 > 2𝑛… but this does not imply 𝑇 𝑛 ≠ poly 𝑛  
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Which of the following best describes what we’ve proven?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: We showed that 𝑇 𝑛 > 2𝑛

for all sufficiently large 𝑛

B: We showed that 𝑇 𝑛 > 2𝑛

for all 𝑛

D: We showed that 𝑇 𝑛 > 2𝑛

for infinitely many 𝑛

A: We showed that 𝑇 𝑛 > 2𝑛

for a single value of 𝑛 



Proof that 𝑌 ∉ P

• Let 𝑅 be a TM that decides 𝑌, with time complexity 𝑇: ℕ → ℕ

• Add dummy states! For infinitely many values of 𝑛, there exists a TM 𝑅𝑛 such 

that 𝑅𝑛 decides 𝑌, 𝑅𝑛 has time complexity 𝑇, and 𝑅𝑛 = 𝑛

• Each 𝑅𝑛 must reject 𝑅𝑛  after more than 2𝑛 steps

• Otherwise, it would get trapped in a liar paradox

• Therefore, 𝑇 𝑛 > 2𝑛 for infinitely many values of 𝑛, hence 𝑇 𝑛 ≠ poly 𝑛
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 2 𝑀  steps



The Time Hierarchy Theorem

• Using the same proof idea, we can prove a more general theorem:

• *assuming 𝑇 is a “reasonable” time complexity bound. We will come back to this

• “TIME 𝑜 𝑇 ” means the set of languages that are decidable in time 𝑜 𝑇

• “Given more time, we can solve more problems”
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Time Hierarchy Theorem: For every* function 𝑇: ℕ → ℕ such that 𝑇 𝑛 ≥ 𝑛,

there is a language 𝑌 ∈ TIME 𝑇4  such that 𝑌 ∉ TIME 𝑜 𝑇 .



Proof of the Time Hierarchy Theorem

• Let 𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

• On the next four slides, we will prove:

• 𝑌 ∈ TIME 𝑇4  

• 𝑌 ∉ TIME 𝑜 𝑇
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Proof that 𝑌 ∈ TIME 𝑇4

• An algorithm that decides 𝑌:

• Time complexity in the TM model?
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

Given the input 𝑀 :

1. Simulate 𝑀 on 𝑀  for 𝑇 𝑀  steps

2. If it rejects within that time, accept

3. Otherwise, reject



Proof that 𝑌 ∈ TIME 𝑇4

• Let 𝑛 = 𝑀

• Each simulated step takes 𝑂 𝑛  actual 

steps

• Total time complexity of multi-tape 

machine: 𝑂 𝑇 𝑛 ⋅ 𝑛

• After converting to a one-tape 

machine: 𝑂 𝑇 𝑛 2 ⋅ 𝑛2 = 𝑂 𝑇 𝑛 4
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …
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Time-constructible functions

• Definition: A function 𝑇: ℕ → ℕ is time-constructible if there exists a multi-

tape Turing machine 𝑀 such that

• Given input 1𝑛, 𝑀 halts with 1𝑇 𝑛  written on tape 2

• 𝑀 has time complexity 𝑂 𝑇 𝑛

• Our proof that 𝑌 ∈ TIME 𝑇4  works assuming 𝑇 is time-constructible

• All “reasonable” time complexity bounds (e.g., 5𝑛 or 𝑛2 or 2𝑛) are time-

constructible
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Time Hierarchy Theorem

• We showed 𝑌 ∈ TIME 𝑇4

• We still need to show 𝑌 ∉ TIME 𝑜 𝑇
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Time Hierarchy Theorem: For every time-constructible 𝑇: ℕ → ℕ,

there is a language 𝑌 ∈ TIME 𝑇4  such that 𝑌 ∉ TIME 𝑜 𝑇 .

𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps



Proof that 𝑌 ∉ TIME 𝑜 𝑇

• Let 𝑅 be a TM that decides 𝑌, with time complexity 𝑇′: ℕ → ℕ

• Add dummy states! For infinitely many values of 𝑛, there exists a TM 𝑅𝑛 such 

that 𝑅𝑛 decides 𝑌, 𝑅𝑛 has time complexity 𝑇′, and 𝑅𝑛 = 𝑛

• Each 𝑅𝑛 must reject 𝑅𝑛  after more than 𝑇 𝑛  steps

• Otherwise, it would get trapped in a liar paradox

• Therefore, 𝑇′ 𝑛 > 𝑇 𝑛  for infinitely many values of 𝑛, hence 𝑇′ is not 𝑜 𝑇
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps
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