
1

CMSC 28100

Introduction to
Complexity Theory

Spring 2025
Instructor: William Hoza

The nature of this course

• In this course, we will study

• The mathematical and philosophical foundations of computer science

• The ultimate limits of computation

• This course will give you powerful conceptual tools for reasoning about

computation

• There will be very little programming

• Homework and exams will be primarily proof-based

2

Who this course is designed for

• CS students, math students, and anyone who is curious

• Prerequisites:

• Experience with mathematical proofs

• CMSC 27200 or CMSC 27230 or CMSC 37000, or MATH 15900 or MATH 15910

or MATH 16300 or MATH 16310 or MATH 19900 or MATH 25500

3

Who this course is designed for

• It’s okay if you don’t consider yourself “theory-oriented”

• You belong here

• It’s my job to give you resources so you can learn and succeed

• I also consider it my job to persuade you that complexity theory is

important, interesting, enlightening, fun, cool, and worthy of your

attention

4

Class participation

• Please ask questions!

• “What does that notation mean?”

• “I forget what a _____ is. Can you remind me?”

• “How do we know _____?”

• “I’m lost. Can you explain that again?”

5

Textbook

6

• Classic

• Popular

• High-quality

• Not free

Assessment

• 28 homework exercises

• Exercises 1-4 are due Tuesday, April 1

• Midterm exam in class on 4/23

• Final exam at the end of the quarter

7

My office hours

• Mondays (starting next week), 9am to 11am, JCL 205

• Stop by! This is a great time for discussions

• If you are confused/curious about something, I’ll try to help you figure it out

• If you are stuck on a homework exercise, I’ll try to think of a good hint

• If you have a complaint, I’ll listen and try to make things better

8

Teaching assistants

• Zelin Lv

• Office hours: Fridays, 2pm to 3pm, JCL 205

• Office hours: Fridays, 10am to 11am, JCL 207

• Yakov Shalunov

• Office hours: Thursdays, 5pm to 6pm, JCL 205

9

Technology
https://canvas.uchicago.edu/courses/62607

https://williamhoza.com/teaching/spring2025-intro-to-complexity

https://edstem.org/us/courses/76353/

https://www.gradescope.com/courses/988815

• Canvas: https://canvas.uchicago.edu/courses/62607

• Homework exercises; practice exams; official solutions

• Course webpage: https://williamhoza.com/teaching/spring2025-intro-to-complexity

• Course policies; slides

• Ed: https://edstem.org/us/courses/76353/

• Discussions (≈ office hours); announcements

• Gradescope: https://www.gradescope.com/courses/988815

• Submitting homework solutions; grades and feedback
10

https://canvas.uchicago.edu/courses/62607
https://williamhoza.com/teaching/spring2025-intro-to-complexity
https://edstem.org/us/courses/76353/
https://www.gradescope.com/courses/988815

The central question of this course:

Which problems

can be solved

through computation?

11

Examples

• Many problems can be solved

through computation:

• Multiplication

• Sorting

• Shortest path

• Are there any problems that cannot be

solved through computation?

12

Impossibility proofs

• We will take a mathematical approach to this question

• We will formulate precise mathematical models

• “Computation”

• “Problem”

• “Solve”

• Then we will write rigorous mathematical proofs of impossibility

13

Which problems

can be solved

through computation?

14

Computation

• Computers: Modern technology?

• Computation is ancient

• Can be performed by:

• A human being with paper and a pencil

• A smartphone

• A steam-powered machine

• We want a mathematical model that describes

all of these and transcends any one technology

15

Computation

• Note: Humans can do all the same computations

that smartphones/laptops do

• (less quickly and less reliably)

• Consequence: We can study

computation without understanding

electronics

• Computation is a familiar, everyday, human act

16

Ex: Palindromes

• Suppose a long string

of bits is written on a

blackboard

• Our job: Figure out whether the string is a “palindrome,” i.e., whether

it is the same forwards and backwards

• What should we do?

17

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Ex: Palindromes

• Idea: Compare and cross

off the first and last

symbols

• Repeat until we find a

mismatch or everything

is crossed off

18

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Not a
palindrome

0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0

Local decisions

• In each step, how do we know what to do next?

1. We keep track of some information (“state”) in our mind

2. We look at the local contents of the blackboard

(one symbol is sufficient)

• We can describe the algorithm

using a “state diagram”

(next slide)
19

I just crossed off a zero,
and now I’m heading over

to the right end of the
string

20

Just crossed off 0

Start

Just crossed off 1

Checking for a
matching 0

Checking for a
matching 1

Output NO
Returning to

start

See 0 or 1: move right

See 0 or 1:
move right

See 0 or 1:
move left

See 1

See 0

Output YES

See 0 or 1

See 0 or 1

The Turing machine model

• Turing machines: A mathematical model of human computation

• In a nutshell, a Turing machine is any algorithm that can be described

by a state diagram like the one we just saw

21

The Turing machine model

• We imagine an infinite, one-dimensional “tape”

• The tape is divided into “cells.” Each cell has one symbol written in it

• There is a “head” pointing at one cell of the tape

• The machine can be in one of finitely many internal “states”
22

1 1 000101⊔⊔ ⊔ ⊔

Turing machines

23

• In each step, the machine decides

• What to write

• Which direction to move the head (left or right)

• The new state

• The decision is based only on the current state and the observed

symbol

Transition function

• Mathematically, we have a transition function

𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R}

• Here 𝑄 is the set of states and Σ is the set of symbols

• 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, 𝐷) means:

• If we are in the state 𝑞 and we read the symbol 𝑏…

• Then our new state will be 𝑞′, we will write 𝑏′ (replacing 𝑏), and the head will

move in direction 𝐷. (L = left, R = right)

24

𝑞 𝑞′

See 𝑏: Replace it with 𝑏′;
move in direction 𝐷

The input to a Turing machine

• One Turing machine represents one algorithm

• For us, the input to a Turing machine will always be a finite string of bits

25

Symbols and alphabets

• An “alphabet” Σ is any nonempty, finite set of “symbols”

• Σ = {0, 1}

• Σ = 0, 1, 0, 1

• Σ = {A, B, C, … , Z}

• Σ = { , , , , }

26

Strings

• Let Σ be an alphabet

• A string over Σ is a finite sequence of symbols from Σ

• The length of a string 𝑥 is the number of symbols, denoted 𝑥

• If 𝑛 is a nonnegative integer, then Σ𝑛 is the set of length-𝑛 strings over Σ

• Example: If Σ = {0, 1}, then

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}

27

If 𝚺 = 𝒎, then what is 𝚺𝟎 ?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: Σ0 = 𝑚A: Σ0 = 0

D: Σ0 is not well-definedC: Σ0 = 1

The empty string

• If Σ is any alphabet, then |Σ0| = 1

• There is one string of length zero, called the empty string

• We use 𝜖 to denote the empty string

• Denoted "" in popular programming languages

• Σ0 = {𝜖}

28

Arbitrary-length strings

• Let Σ be an alphabet

• We define Σ∗ to be the set of strings over Σ of any finite length:

Σ∗ = ራ

𝑛=0

∞

Σ𝑛

• Example: If Σ = {0, 1}, then

Σ∗ = {𝜖, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, … }

29

Turing machine initialization

• The tape initially contains the input string 𝑤 ∈ 0, 1 ∗ (one bit per cell)

• Each cell to the left or right of the input initially contains a special

“blank symbol” ⊔

30

𝑤1 𝑤2 𝑤3 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⊔ ⊔⊔

𝑞0

⊔⊔

Turing machine initialization

• The head is initially at the cell containing the first bit of the input

• The machine is initially in a special “start state” 𝑞0

31

𝑤1 𝑤2 𝑤3 ⋯ 𝑤𝑛 ⊔ ⊔ ⊔ ⊔ ⊔⊔

𝑞0

⊔⊔

Halting states

• There are two special “halting states,” 𝑞accept and 𝑞reject

• If the machine ever reaches 𝑞accept, this means it has accepted the input

• If the machine ever reaches 𝑞reject, this means it has rejected the input

• Either way, the computation is finished. We say that the machine halts
32

Input Turing Machine

Accept

Reject

Run forever (“loop”)

Looping

• It is also possible that the machine runs forever without ever reaching

𝑞accept or 𝑞reject

• In this case, we say that the machine does not halt, does not accept the

input, and does not reject the input

33

Input Turing Machine

Accept

Reject

Run forever (“loop”)

Defining Turing machines rigorously

• Definition: A Turing machine is a 7-tuple 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿

such that

• 𝑄 is a finite set (the set of “states”)

• 𝑞0, 𝑞accept, 𝑞reject ∈ 𝑄 and 𝑞accept ≠ 𝑞reject

• Σ is a finite set of symbols (the “tape alphabet”)

• ⊔ is a symbol (the “blank symbol”)

• 0, 1,⊔ ⊆ Σ and ⊔ ∉ 0, 1

• 𝛿 is a function 𝛿: 𝑄 × Σ → 𝑄 × Σ × {L, R} (the “transition function”)
34

Warning: The definition in the

textbook is slightly different. Sorry!

(The two models are equivalent.)

State diagram

• Each node represents a state

• An arc from 𝑞 to 𝑞′

labeled “𝑏 → 𝑏′, 𝐷”

means 𝛿 𝑞, 𝑏 = (𝑞′, 𝑏′, 𝐷)

• The label “𝑏 → 𝐷” is shorthand for “𝑏 → 𝑏, 𝐷”

• An arc labeled “𝑎, 𝑏 → ⋯” represents two arcs (“𝑎 → ⋯” and “𝑏 → ⋯”)

35

𝑞0

𝑟0

𝑟1

ℓ0

ℓ1

ℓ 𝑞reject

𝑞accept

⊔ → L

⊔ → L

0,1 → R

0,1 → R

0,1 → L
⊔ → R

Defining TM computation rigorously

• Transition function 𝛿 describes the local evolution of the computation

• What about the global evolution?

36

Configurations of a Turing machine

• Let 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 be a Turing machine

• A configuration of 𝑀 is a triple (𝑢, 𝑞, 𝑣) where 𝑢 ∈ Σ∗, 𝑞 ∈ 𝑄, 𝑣 ∈ Σ∗, and

𝑣 ≠ 𝜖. Interpretation:

• The tape currently contains ⋯ ⊔⊔⊔⊔ 𝑢𝑣 ⊔⊔⊔⊔ ⋯

• The machine is currently in state 𝑞 and the head is pointing at the first symbol of 𝑣

37

𝑢1 𝑢2⊔ ⋯ 𝑢𝑛 𝑣1 𝑣2 ⋯ 𝑣𝑚 ⊔ ⊔

𝑞

⊔⊔

Configuration shorthand

• Instead of 𝑢, 𝑞, 𝑣 , we often write 𝑢𝑞𝑣

• We think of 𝑢𝑞𝑣 as a string over the alphabet Σ ∪ 𝑄

• This shorthand can only be used if 𝑄 ∩ Σ = ∅, which we can assume

without loss of generality by renaming states if necessary

38

Equivalent configurations

• Note: 𝑢𝑞𝑣 and 𝑢𝑞𝑣 ⊔ are technically two distinct configurations…

• However, they represent the same scenario

• We can say that they are “equivalent”

• (A configuration is a finite string, even though the tape is infinitely long)

• Similarly, ⊔ 𝑢𝑞𝑣 is equivalent to 𝑢𝑞𝑣

39

The initial configuration

• Let 𝑤 ∈ 0, 1 ∗ be an input

• The initial configuration of 𝑀 on 𝑤 is

ቊ
𝑞0𝑤 if 𝑤 ≠ 𝜖
𝑞0 ⊔ if 𝑤 = 𝜖

40

The “next” configuration

• For any configuration 𝑢𝑞𝑣, we define NEXT 𝑢𝑞𝑣 as follows:

• Break 𝑢𝑞𝑣 into individual symbols: 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑞𝑣1𝑣2𝑣3 … 𝑣𝑚

• If 𝛿 𝑞, 𝑣1 = 𝑞′, 𝑏, R , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏𝑞′𝑣2𝑣3 … 𝑣𝑚

• Edge case: If 𝑚 = 1, then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑢𝑛𝑏𝑞′ ⊔

• If 𝛿 𝑞, 𝑣1 = 𝑞′, 𝑏, L , then NEXT 𝑢𝑞𝑣 = 𝑢1𝑢2 … 𝑢𝑛−1𝑞′𝑢𝑛𝑏𝑣2𝑣3 … 𝑣𝑚

• Edge case: If 𝑛 = 0, then NEXT 𝑢𝑞𝑣 = 𝑞′ ⊔ 𝑏′𝑣2𝑣3 … 𝑣𝑚

• We write NEXT𝑀 𝑢𝑞𝑣 if 𝑀 is not clear from context

41

Halting configurations

• An accepting configuration is a configuration of the form 𝑢𝑞accept𝑣

• A rejecting configuration is a configuration of the form 𝑢𝑞reject𝑣

• A halting configuration is an accepting or rejecting configuration

42

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2025 Instructor: William Hoza
	Slide 2: The nature of this course
	Slide 3: Who this course is designed for
	Slide 4: Who this course is designed for
	Slide 5: Class participation
	Slide 6: Textbook
	Slide 7: Assessment
	Slide 8: My office hours
	Slide 9: Teaching assistants
	Slide 10: Technology
	Slide 11: The central question of this course: Which problems can be solved through computation?
	Slide 12: Examples
	Slide 13: Impossibility proofs
	Slide 14: Which problems can be solved through computation?
	Slide 15: Computation
	Slide 16: Computation
	Slide 17: Ex: Palindromes
	Slide 18: Ex: Palindromes
	Slide 19: Local decisions
	Slide 20
	Slide 21: The Turing machine model
	Slide 22: The Turing machine model
	Slide 23: Turing machines
	Slide 24: Transition function
	Slide 25: The input to a Turing machine
	Slide 26: Symbols and alphabets
	Slide 27: Strings
	Slide 28: The empty string
	Slide 29: Arbitrary-length strings
	Slide 30: Turing machine initialization
	Slide 31: Turing machine initialization
	Slide 32: Halting states
	Slide 33: Looping
	Slide 34: Defining Turing machines rigorously
	Slide 35: State diagram
	Slide 36: Defining TM computation rigorously
	Slide 37: Configurations of a Turing machine
	Slide 38: Configuration shorthand
	Slide 39: Equivalent configurations
	Slide 40: The initial configuration
	Slide 41: The “next” configuration
	Slide 42: Halting configurations

