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Which problems
can be solved

through computation?



Randomized Turing machines

Input tape = O 1 1 0 L L

Randomness tape = O




The complexity class BPP

e Let L € X" be a language

* Definition: L € BPP if there exists a randomized polynomial-time
Turing machine M such that for every w € X*:

* Ifw € L, then Pr[M accepts w] = 2/3

* Ifw & L, then Pr[M accepts w] < 1/3

* “Bounded-error Probabilistic Polynomial-time”



Amplification lemma

* Let L € BPP, and let k € N be any constant

Amplification Lemma: There exists a randomized polynomial-time

Turing machine M such that for everyn € N and every w € X"

* |Ifw € L, then Pr[M acceptsw]| > 1 — 1/2”k

* Ifw & L, then Pr[M accepts w| < 1/2”k

* Asn — oo, the error probability goes to 0 extremely rapidly!



Proof of the amplification lemma

* For simplicity, we will only prove the amplification lemma in a special case

* We will assume that there is a randomized poly-time Turing machine M,

such that for everyw € X*:

* Ifw € L, then Pr[M, accepts w] = 2/3

* Ifw & L, then Pr[M, accepts w] = 0 k& No false positives!

* See the textbook for a proof of the general case



If M, uses R(n) many random bits, then
how many random bits does M use?

Proof of the amp<A:R(n)+nk S

V'V V

] < C: R(n)* >< D: Not enough information
* Low-error algorithm M: (
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1) Fori = 1ton*:

a) Simulate M, on w using fresh random bits.
> Polynomial time

b) If M, accepts, accept.

2) Reject. )

* Ifw ¢ L, then Pr[M accepts w| = 0. Still no false positives

* If w € L, then Pr[M rejects w] < (1/3)"k = 1/3"k < 1/2”k



BPP as a model of tractability

* Because of the amplification lemma, languages in BPP should be
considered “tractable”

2100

* A mistake that occurs with probability 1/ can be safely ignored

 (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)



Extended Church-Turing Thesis

* Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* Does the BPP model disprove the extended Church-Turing thesis?



P vs. BPP BPP

« P € BPP

e Does P = BPP?

* |s randomness helpful for computation?

* |[f P # BPP, then the extended Church-Turing thesis is false
* This is a profound question about the nature of efficient computation

* It's an open question! Nobody knows how to prove P = BPP or P + BPP
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P vs. BPP

* In communication complexity, randomness is powerful
* There are some languages in BPP that are not known to be in P
* These considerations might suggest P # BPP

 Surprisingly, there is a significant body of evidence favoring the opposite!

Conjecture: P = BPP
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Extended Church-Turing Thesis

e Let L be a language

Extended Church-Turing Thesis:
It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* Assuming P = BPP, the extended Church-Turing thesis survives the

challenge posed by randomized computation!
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Derandomization

* Suppose L € BPP
* |f we want to decide L without randomness, what can we do?

* How can we convert a randomized algorithm into a deterministic

algorithm?
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Brute-force derandomization

* Let M be the randomized polynomial-time Turing machine guaranteed by

the assumption L € BPP. Say M runs in time n*

* Deterministic algorithm that decides L: Given w € X":

1. Foreveryu € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and u on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject




Brute-force derandomization: Correctness

1.

2.

For every u € {0, 1}"k:

a)

b)

Simulate M, initialized with w on tape 1 and u on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

e Ifw € L, then at least

< A: 2Poly(n) >< B: poly(n)
e Ifw & L, then at mosi

< C: 22®(n) >< D: oo

What is the time complexity of the algorithm?

VvV VvV V
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Brute-force derandomization: Time complexity

1. Foreveryu € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

* Time complexity: 2P°ly(™) ¢

* This algorithm does not show that P = BPP, but it does show that even

randomized algorithms have limitations. For example, HALT & BPP



The complexity class EXP

* Definition: EXP is the class of languages that can be decided in time

2poly(n).

EXP = 0 TIME (2”")

k=1

* Brute-force derandomization proves that BPP © EXP
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P € BPP © EXP

HALT

—

Decidable languages

DECOMPOSABLE-INTO-SQUARES

PALINDROMES

//



Brute-force derandomization: Space complexity

1.

2.

For every u € {0, 1}"k:

a)

b)

Simulate M, initialized with w on tape 1 and u on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

< What is the space complexity of the algorithm?

D

< A: 20(n") >< B: poly(n)

>

<o X o

D
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The complexity class PSPACE

* Let L be a language

* Definition: L € PSPACE if there exists a Turing machine M that

decides L with space complexity O(nk) for some constant k € N

* Brute-force derandomization proves that BPP € PSPACE

20



PSPACE vs. EXP

 We have proven two upper bounds on the power of BPP:

 BPP € EXP
 BPP € PSPACE

* Which theorem is stronger?

* How does PSPACE compare to EXP?
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Theorem: PSPACE € EXP

* Proof: Let M be a Turing machine that decides a language L

e Let T, S be the amounts of time/space that M uses on some input w
* Problemset 2: T < C°*', where C depends only on M

* When S = poly(n), we get

T < cPoly() = (208 )PPV _ 5(0g0)-poly(m) — ppoly(n)
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Decidable languages

PSPACE
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