CMSC 28100

Introduction to
Complexity Theory

Spring 2024
Instructor: William Hoza

Which problems
can be solved

through computation?

Randomized Turing machines

Input tape = O 1 1 0 L L

Randomness tape = O

The complexity class BPP

e Let L € X" be a language

* Definition: L € BPP if there exists a randomized polynomial-time
Turing machine M such that for every w € X*:

* Ifw € L, then Pr[M accepts w] = 2/3

* Ifw & L, then Pr[M accepts w] < 1/3

* “Bounded-error Probabilistic Polynomial-time”

Amplification lemma

* Let L € BPP, and let k € N be any constant

Amplification Lemma: There exists a randomized polynomial-time

Turing machine M such that for everyn € N and every w € X"

* |Ifw € L, then Pr[M acceptsw]| > 1 — 1/2”k

* Ifw & L, then Pr[M accepts w| < 1/2”k

* Asn — oo, the error probability goes to 0 extremely rapidly!

Proof of the amplification lemma

* For simplicity, we will only prove the amplification lemma in a special case

* We will assume that there is a randomized poly-time Turing machine M,

such that for everyw € X*:

* Ifw € L, then Pr[M, accepts w] = 2/3

* Ifw & L, then Pr[M, accepts w] = 0 k& No false positives!

* See the textbook for a proof of the general case

If M, uses R(n) many random bits, then
how many random bits does M use?

Proof of the amp<A:R(n)+nk S

V'V V

] < C: R(n)* >< D: Not enough information
* Low-error algorithm M: (

Respond at PollEv.com/whoza or text “whoza” to 22333
1) Fori = 1ton*:

a) Simulate M, on w using fresh random bits.
> Polynomial time

b) If M, accepts, accept.

2) Reject.)

* Ifw ¢ L, then Pr[M accepts w| = 0. Still no false positives

* If w € L, then Pr[M rejects w] < (1/3)"k = 1/3"k < 1/2”k

BPP as a model of tractability

* Because of the amplification lemma, languages in BPP should be
considered “tractable”

2100

* A mistake that occurs with probability 1/ can be safely ignored

 (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)

Extended Church-Turing Thesis

* Let L be a language

Extended Church-Turing Thesis:

It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* Does the BPP model disprove the extended Church-Turing thesis?

P vs. BPP BPP

« P € BPP

e Does P = BPP?

* |s randomness helpful for computation?

* |[f P # BPP, then the extended Church-Turing thesis is false
* This is a profound question about the nature of efficient computation

* It's an open question! Nobody knows how to prove P = BPP or P + BPP

10

P vs. BPP

* In communication complexity, randomness is powerful
* There are some languages in BPP that are not known to be in P
* These considerations might suggest P # BPP

 Surprisingly, there is a significant body of evidence favoring the opposite!

Conjecture: P = BPP

11

Extended Church-Turing Thesis

e Let L be a language

Extended Church-Turing Thesis:
It is physically possible to build a device that

decides L in polynomial time if and only if L € P.

* Assuming P = BPP, the extended Church-Turing thesis survives the

challenge posed by randomized computation!

12

Derandomization

* Suppose L € BPP
* |f we want to decide L without randomness, what can we do?

* How can we convert a randomized algorithm into a deterministic

algorithm?

13

Brute-force derandomization

* Let M be the randomized polynomial-time Turing machine guaranteed by

the assumption L € BPP. Say M runs in time n*

* Deterministic algorithm that decides L: Given w € X":

1. Foreveryu € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and u on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

Brute-force derandomization: Correctness

1.

2.

For every u € {0, 1}"k:

a)

b)

Simulate M, initialized with w on tape 1 and u on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

e Ifw € L, then at least

< A: 2Poly(n) >< B: poly(n)
e Ifw & L, then at mosi

< C: 22®(n) >< D: oo

What is the time complexity of the algorithm?

VvV VvV V

Respond at PollEv.com/whoza or text “whoza” to 22333

15

Brute-force derandomization: Time complexity

1. Foreveryu € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and u on tape 2
b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

* Time complexity: 2P°ly(™) ¢

* This algorithm does not show that P = BPP, but it does show that even

randomized algorithms have limitations. For example, HALT & BPP

The complexity class EXP

* Definition: EXP is the class of languages that can be decided in time

2poly(n).

EXP = 0 TIME (2”")

k=1

* Brute-force derandomization proves that BPP © EXP

17

P € BPP © EXP

HALT

—

Decidable languages

DECOMPOSABLE-INTO-SQUARES

PALINDROMES

//

Brute-force derandomization: Space complexity

1.

2.

For every u € {0, 1}"k:

a)

b)

Simulate M, initialized with w on tape 1 and u on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

< What is the space complexity of the algorithm?

D

< A: 20(n") >< B: poly(n)

>

<o X o

D

Respond at PollEv.com/whoza or text “whoza” to 22333

19

The complexity class PSPACE

* Let L be a language

* Definition: L € PSPACE if there exists a Turing machine M that

decides L with space complexity O(nk) for some constant k € N

* Brute-force derandomization proves that BPP € PSPACE

20

PSPACE vs. EXP

 We have proven two upper bounds on the power of BPP:

 BPP € EXP
 BPP € PSPACE

* Which theorem is stronger?

* How does PSPACE compare to EXP?

21

Theorem: PSPACE € EXP

* Proof: Let M be a Turing machine that decides a language L

e Let T, S be the amounts of time/space that M uses on some input w
* Problemset 2: T < C°*', where C depends only on M

* When S = poly(n), we get

T < cPoly() = (208)PPV _ 5(0g0)-poly(m) — ppoly(n)

22

Decidable languages

PSPACE

23

	Slide 1: CMSC 28100 Introduction to Complexity Theory Spring 2024 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Randomized Turing machines
	Slide 4: The complexity class BPP
	Slide 5: Amplification lemma
	Slide 6: Proof of the amplification lemma
	Slide 7: Proof of the amplification lemma
	Slide 8: BPP as a model of tractability
	Slide 9: Extended Church-Turing Thesis
	Slide 10: P vs. BPP
	Slide 11: P vs. BPP
	Slide 12: Extended Church-Turing Thesis
	Slide 13: Derandomization
	Slide 14: Brute-force derandomization
	Slide 15: Brute-force derandomization: Correctness
	Slide 16: Brute-force derandomization: Time complexity
	Slide 17: The complexity class EXP
	Slide 18: P subset or equals BPP subset or equals EXP
	Slide 19: Brute-force derandomization: Space complexity
	Slide 20: The complexity class PSPACE
	Slide 21: PSPACE vs. EXP
	Slide 22
	Slide 23

