CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Whiehproblems

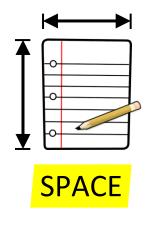
can be solved

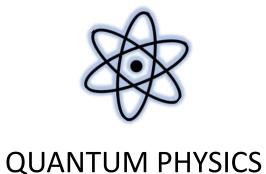
through ecomputation?

Complexity theory:

The study of computational resources

Computational resources: Fuel for algorithms





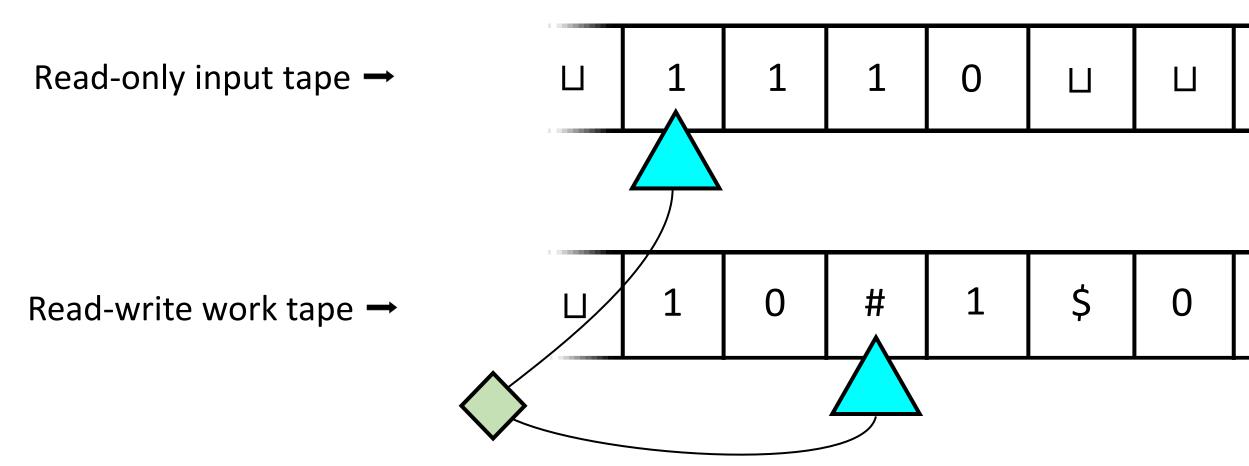
P vs. NP vs. PSPACE vs. EXP

- $P \subseteq NP \subseteq PSPACE \subseteq EXP$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict. (Why?)

Sublinear-space computation

- Can we solve any interesting problems using o(n) space?
- The one-tape Turing machine is the not the right model of computation for studying sublinear-space algorithms

Sublinear-space computation

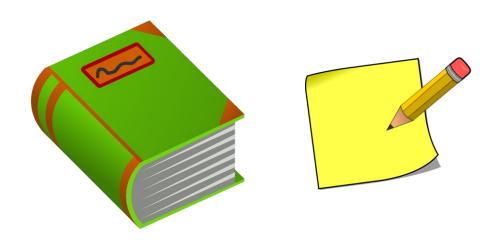


The complexity class SPACE(S)

- Let $Y \subseteq \{0, 1\}^*$ and let $S: \mathbb{N} \to \mathbb{N}$ be a function (space bound)
- **Definition:** $Y \in SPACE(S)$ if there is a two-tape Turing machine M such that:
 - *M* decides *Y*
 - *M* never modifies the symbols written on tape 1
 - Tape 1 head is always located within one cell of the input
 - When the input has length n, the tape 2 head visits O(S(n)) cells

The complexity class L

- Exercise: $PSPACE = \bigcup_k SPACE(n^k)$
- **Definition:** $L = SPACE(\log n)$
- L is the set of languages that can be decided in logarithmic space



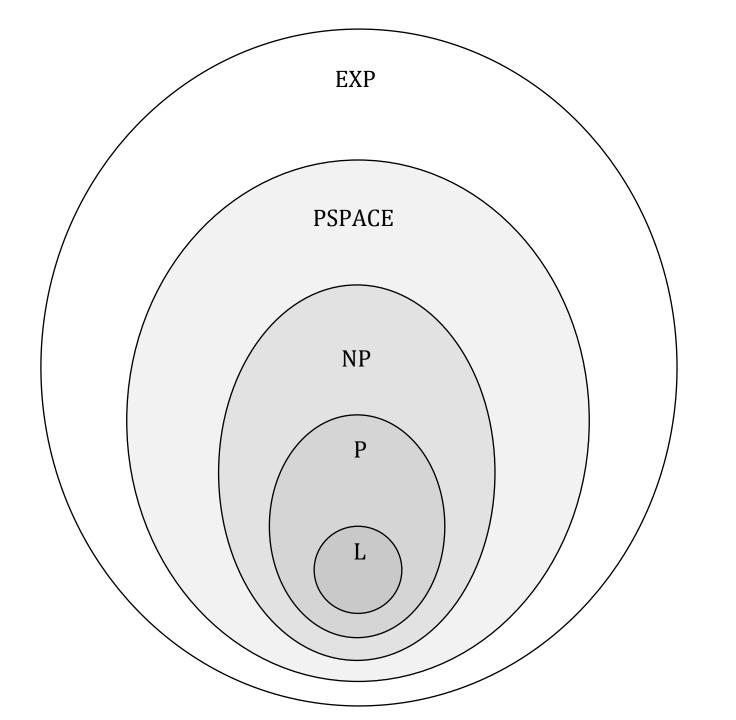
Example: Balanced binary strings

- BALANCED = $\{x \in \{0, 1\}^* : x \text{ has equal numbers of zeroes and ones}\}$
- Claim: BALANCED \in L
- **Proof sketch:** Given $x \in \{0, 1\}^n$:
 - Count the number of ones in x
 - Count the number of zeroes in x
 - Check whether the two counts are equal

These counters are only $\log n$ bits each!

$L \subseteq P$

- Exercise: Show that $L \subseteq P$
- (Similar to the proof that PSPACE \subseteq EXP)



The L vs. P problem

- We expect that $L \neq P$, but we don't know how to prove it
- L = P would mean that every efficient algorithm can be modified so that it only uses a tiny amount of work space

L vs. P vs. NP vs. PSPACE

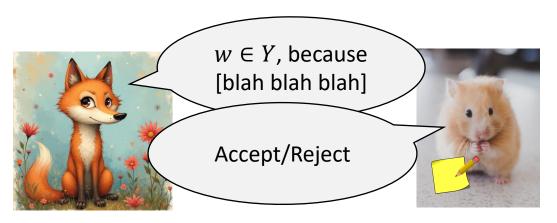
- $L \subseteq P \subseteq NP \subseteq PSPACE$
- What we expect: All of these containments are strict
- What we can prove: At least one of these containments is strict:

Theorem: $L \neq PSPACE$

(Proof omitted)

Nondeterministic log space computation

- Definition: NL is the class of languages that can be decided by a nondeterministic log-space Turing machine
- Equivalently, we imagine a log-space verifier
 - Technicality: Verifier reads certificate one time from left to right



The *s-t* connectivity problem

- STCONN = $\{\langle G, s, t \rangle : G \text{ is a digraph, } s \text{ and } t \text{ are vertices,}$ and there is a directed path from $s \text{ to } t\}$
- Claim: $STCONN \in NL$
- **Proof sketch:** Take a nondeterministic walk through G starting from S for |V| steps. If we ever reach t, accept; otherwise, reject.
- Verifier perspective: Certificate = path from s to t

Two surprises about NL

• We expect that $P \neq NP$. In contrast:

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

• We expect that $NP \neq coNP$. In contrast:

Immerman-Szelepcsényi Theorem: NL = coNL

Proof of Savitch's theorem

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

- Proof step 1: Show that STCONN \in SPACE($\log^2 n$)
- Proof step 2: Show that STCONN is "NL-complete"

Savitch's algorithm

- Claim (Savitch's algorithm): STCONN \in SPACE($\log^2 n$)
- **Proof sketch:** Let's figure out: is there a path from s to t of length at most 2^k ?
 - 1. For all $m \in V$:
 - a) Recursively figure out whether there is a path from s to m of length at most 2^{k-1}
 - b) Recursively figure out whether there is a path from m to t of length at most 2^{k-1}
 - c) If both such paths exist, halt and accept
 - 2. Halt and reject
- Space complexity is $O(k \log n)$, which is $O(\log^2 n)$ when $k = \lceil \log |V| \rceil$

Proof of Savitch's theorem

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

- Proof step 1: Show that STCONN \in SPACE($\log^2 n$) \checkmark
- Proof step 2: Show that STCONN is "NL-complete"

Log-space reductions

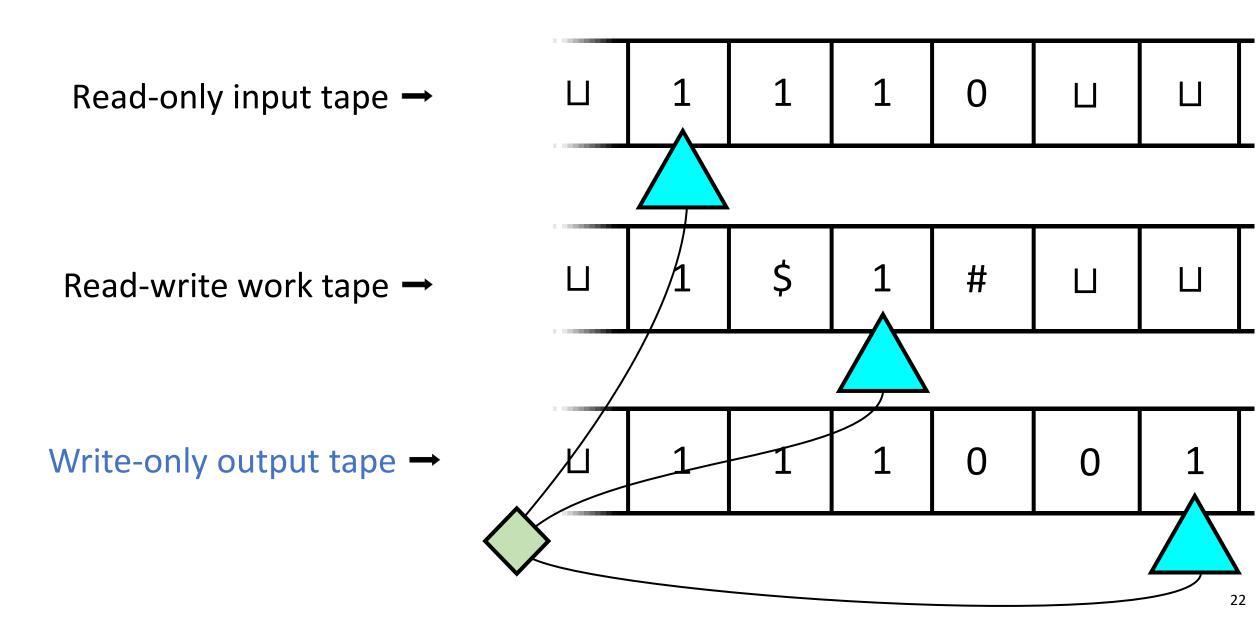
- To prove Savitch's theorem, we will use a new type of reduction
- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- **Definition:** We write $Y_1 \leq_L Y_2$ if there exists $\Psi: \{0, 1\}^* \to \{0, 1\}^*$ such that
 - For every $w \in Y_1$, we have $\Psi(w) \in Y_2$
 - For every $w \notin Y_1$, we have $\Psi(w) \notin Y_2$
 - Ψ can be computed in $O(\log n)$ space

("YES maps to YES")

("NO maps to NO")

← Definition on next slides

Space-bounded "transducer"



Space complexity for string-valued functions

- Let $\Psi: \{0, 1\}^* \to \{0, 1\}^*$ and let $S: \mathbb{N} \to \mathbb{N}$
- **Def:** We say Ψ is computable in O(S) space if there is a 3-tape TM M such that:
 - If we initialize M with w on tape 1, then it halts with $\Psi(w)$ on tape 3
 - *M* never modifies tape 1 and *M*'s behavior does not depend on what it reads on tape 3
 - The tape 1 head is always located within one cell of the input
 - When the input has length n, the tape 2 head visits O(S(n)) cells

NL-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say that Y is NL-complete if $Y \in NL$ and for every $Z \in NL$, we have $Z \leq_L Y$

STCONN is NL-complete

Theorem: STCONN is NL-complete

- **Proof:** We have already shown STCONN ∈ NL
- Now let M be a nondeterministic log-space TM that decides Y
- Reduction: $\Psi(w) = \langle G, s, t \rangle$
- Each vertex in G represents a "configuration" of M on w, namely, the internal state, the contents of the work tape, and the locations of heads

STCONN is NL-complete

- We put an edge from u to v if M can go from u to v in a single step (with w written on input tape)
- We let s = the initial configuration and t = the accepting configuration
- (Without loss of generality, the accepting configuration is unique)
- YES maps to YES NO maps to NO
- Exercise: The reduction can be computed in $O(\log n)$ space \checkmark

Proof of Savitch's theorem

Savitch's Theorem: $NL \subseteq SPACE(\log^2 n)$

- Proof step 1: Show that STCONN \in SPACE($\log^2 n$) \checkmark
- Proof step 2: Show that STCONN is NL-complete
- Proof step 3: Show that $SPACE(\log^2 n)$ is closed under log-space mapping reductions