CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Whiehproblems

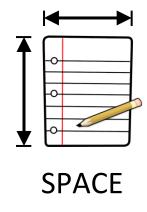
can be solved

through ecomputation?

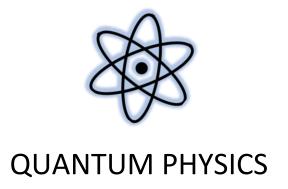
Complexity theory:

The study of computational resources

Computational resources: Fuel for algorithms



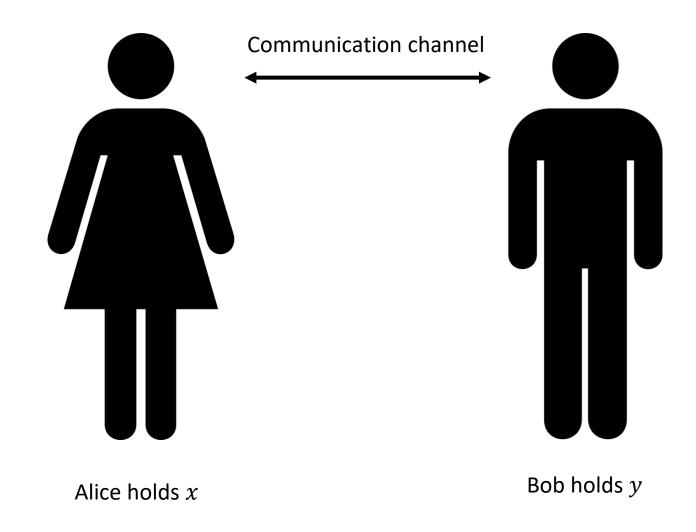
RANDOMNESS



Communication Complexity

Communication complexity

- Goal: Compute f(x, y) using as little communication as possible
- In each round, one party sends a single bit; the other party listens
- At the end, both parties announce f(x, y)



The equality function

- We will focus on the case $f = EQ_n$
- $EQ_n: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$
- Definition:

$$EQ_n(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$

"Does your copy of the database match my copy?"

Protocols for equality

Protocol A:

- 1) Alice sends $x \in \{0, 1\}^n$
- 2) Bob sends $EQ_n(x, y) \in \{0, 1\}$

n+1 bits of communication

Protocol B:

- 1) For i = 1 to n:
 - a) Alice sends x_i
 - b) Bob sends a bit indicating whether $x_i = y_i$

2n bits of communication (in the worst case)

Communication complexity of equality

Is there a better protocol?

Theorem: Every deterministic communication protocol for EQ_n

uses at least n+1 bits of communication in the worst case

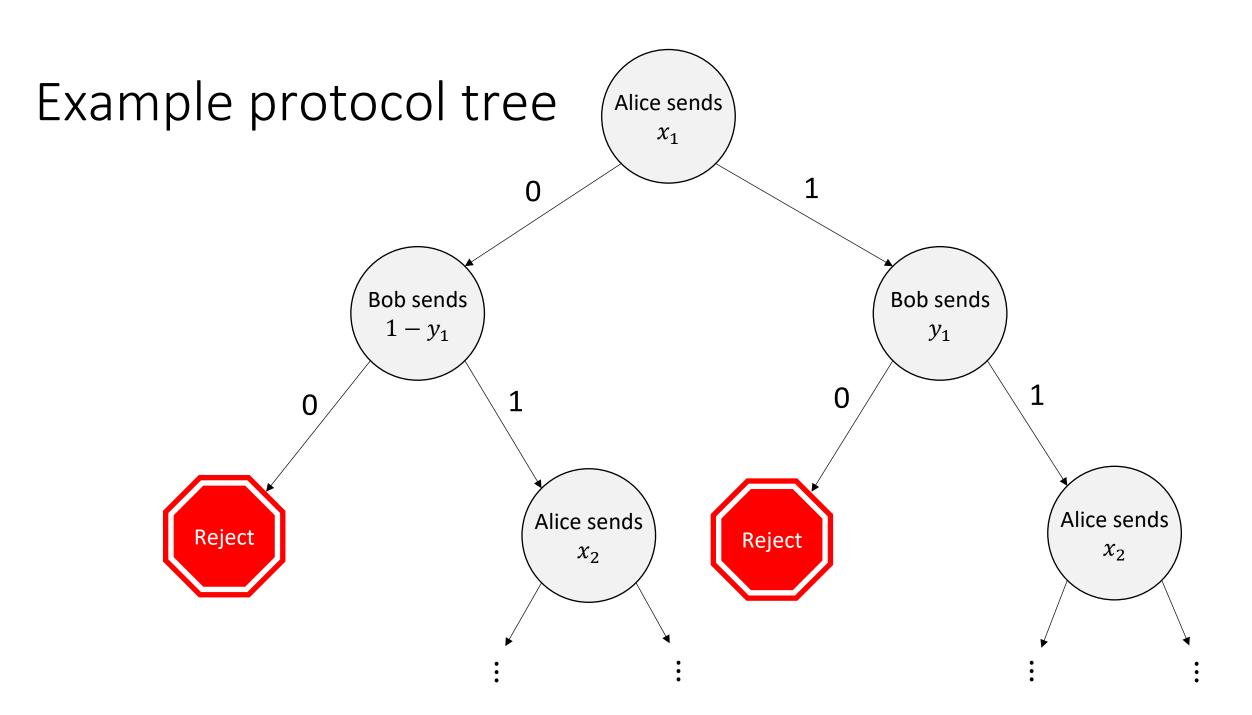
• Before we can prove it, we must clarify how we model communication protocols mathematically

Communication protocol model

- Idea: We model a communication protocol as a binary tree
- We start at the root node
- Someone transmits a zero

 We move to the left child
- Someone transmits a one

 We move to the right child
- (Alice and Bob both know where we are in the tree)



Rigorously defining communication protocols

- A deterministic communication protocol with n-bit inputs is a rooted binary tree π with the following features
 - The vertex set V is partitioned into $V = V_{\text{Alice}} \cup V_{\text{Bob}} \cup V_{\text{Accept}} \cup V_{\text{Reject}}$
 - Each vertex $v \in V_{Alice} \cup V_{Bob}$ has two children (ℓ and r) and is labeled with a function $\delta_v : \{0,1\}^n \to \{\ell,r\}$
 - Each vertex $v \in V_{\text{Accept}} \cup V_{\text{Reject}}$ has zero children

Rigorously defini

In this model, what happens if Alice and Bob speak at the same time?

A: Trick question. In this model, they never speak simultaneously

B: Only one of the messages is successfully transmitted

• For $x, y \in \{0, 1\}^n$, we detail

C: Both of the messages are successfully transmitted

D: Neither message is successfully transmitted

• Let v_0 = the root vertex

Respond at PollEv.com/whoza or text "whoza" to 22333

- If $v_i \in V_{\text{Alice}}$, then let $v_{i+1} = \delta_{v_i}(x)$
- If $v_i \in V_{\text{Bob}}$, then let $v_{i+1} = \delta_{v_i}(y)$
- If $v_i \in V_{\text{Accept}} \cup V_{\text{Reject}}$, then let $\text{leaf}(x, y) = v_i$
- We say that π accepts (x, y) if $leaf(x, y) \in V_{Accept}$
- We say that π rejects (x, y) if $leaf(x, y) \in V_{Reject}$

Communication complexity

- We say that π computes f if for every $x, y \in \{0, 1\}^n$,
 - If f(x, y) = 1, then π accepts (x, y)
 - If f(x, y) = 0, then π rejects (x, y)
- The cost of the communication protocol π is the depth of the tree, i.e., the length of the longest path from the root to the leaf
- (Cost = number of rounds = number of bits of communication)

Leaf structure

• Suppose π is a communication protocol computing EQ_n and $x,y\in\{0,1\}^n$

Lemma: If leaf(x, x) = leaf(y, y), then x = y

- Proof (sketch): Suppose leaf(x, x) = leaf(y, y) = v (accepting leaf)
- Let v_0, v_1, \dots, v_T be the vertices from the root to v
- Then $\delta_{v_i}(x) = \delta_{v_i}(y) = v_{i+1}$ for every i
- Therefore, leaf(x, y) = v, so π accepts (x, y), so x = y

Communication complexity of equality

Theorem: Every deterministic communication protocol that

computes EQ_n has cost at least n+1

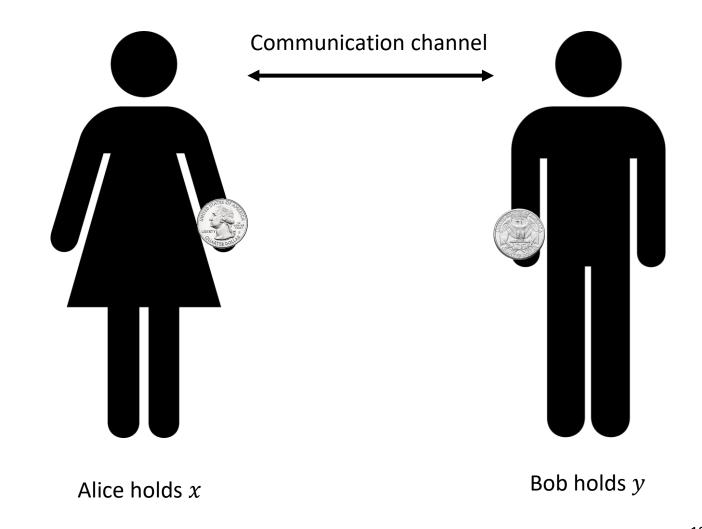
- **Proof:** By the lemma, there are 2^n accepting leaves leaf(x, x)
- There is also at least one rejecting leaf, so there are $> 2^n$ leaves total
- Therefore, there is a leaf at depth > n

Communication complexity of EQ_n

- We just proved that computing EQ_n requires n+1 bits of communication
- However, there is a loophole!
- Our impossibility proof only applies to deterministic protocols!

Randomized communication complexity

 In a randomized communication protocol, Alice and Bob are permitted to make decisions
 based on coin tosses



Randomized communication protocols

- Mathematically, we model a randomized communication protocol with n-bit inputs as a deterministic communication protocol with (n+r)-bit inputs for some $r \geq 0$
- Alice holds xu, where $x \in \{0, 1\}^n$ and $u \in \{0, 1\}^r$
- Bob holds yw, where $y \in \{0, 1\}^n$ and $w \in \{0, 1\}^r$
- Interpretation: x, y are the "actual inputs," and u, w are the coin tosses

Randomized protocols: Accepting/rejecting

- Experiment: Pick $u, w \in \{0, 1\}^r$ independently and uniformly at random
- We say that π accepts (x, y) if π accepts (xu, yw)
- We say that π rejects (x, y) if π rejects (xu, yw)

$$\Pr[\pi \text{ accepts } (x,y)] = \frac{|\{(u,w) : \pi \text{ accepts } (xu,yw)\}|}{2^{2r}}$$

Randomized protocols: Computing a function

- Let $f: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ and let $\delta \in [0, 1]$
- We say that π computes f with error probability δ if for every $x,y\in\{0,1\}^n$:
 - If f(x, y) = 1, then $\Pr[\pi \text{ accepts } (x, y)] \ge 1 \delta$
 - If f(x, y) = 0, then $\Pr[\pi \text{ accepts } (x, y)] \le \delta$

Randomized communication complexity of EQ_n

• Let $\delta > 0$ be any constant

Theorem: For every $n \in \mathbb{N}$, there exists a randomized communication protocol with cost $O(\log n)$ that computes EQ_n with error probability δ

- Randomized protocols are exponentially better than deterministic protocols!
- Proof: Next three slides

Randomized protocol for EQ_n

- Think of $x, y \in \{0, 1\}^n$ as numbers $x, y \in \{0, 1, ..., 2^n 1\}$
- Let $p_1 \le p_2 \le p_3 \le \cdots$ be the sequence of all prime numbers

Protocol:

- 1. Alice picks $i \in \{1, 2, ..., n/\delta\}$ uniformly at random (WLOG, n/δ is a power of two)
- 2. Alice sends i and $x \mod p_i$
- 3. Bob sends a bit indicating whether $x \mod p_i = y \mod p_i$
- 4. If so, they accept, otherwise, they reject

Analysis of the protocol: Correctness

Protocol:

- 1. Pick $i \in \{1, 2, ..., n/\delta\}$ u.a.r.
- 2. Send i and $x \mod p_i$
- 3. Check whether $x \equiv y \mod p_i$

- If x = y, then $\Pr[\operatorname{accept}] = \Pr[x \equiv y \bmod p_i] = 1$
- If $x \neq y$, then $\Pr[\operatorname{accept}] = \Pr[x \equiv y \mod p_i] = \Pr[p_i \text{ divides } |x y|]$
- Let BAD be the set of prime numbers that divide |x y|
- $2^{|BAD|} \le \prod_{p \in BAD} p \le |x y| < 2^n$
- $\Pr[\text{accept}] = \Pr[p_i \in BAD] \le \frac{|BAD|}{n/\delta} < \frac{n}{n/\delta} = \delta$

Analysis of the protocol: Efficiency

- Sending i costs $O(\log n)$ bits of communication \checkmark
- Sending $x \bmod p_i$ costs $O(\log p_i)$ bits of communication
- How big is p_i (the *i*-th prime)?

Chebyshev's Estimate: Let p_k be the k-th prime. Then $p_k = O(k \cdot \log k)$.

- (Proof omitted)
- Therefore, $\log p_i = \log (O(n \cdot \log n)) = \log (o(n^2)) = O(\log n)$

Protocol:

- 1. Pick $i \in \{1, 2, ..., n/\delta\}$ u.a.r.
- 2. Send i and $x \mod p_i$
- 3. Check whether $x \equiv y \mod p_i$

Recap: The power of randomness

- Is randomness useful?
- For communication protocols: Yes!
- For Turing machines: Probably not much
 - Conjecture: P = BPP