CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

The complexity class coNP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in \text{coNP}$ if there exists a randomized polynomial-time Turing machine M such that for every $w \in \{0, 1\}^*$:
 - If $w \in Y$, then Pr[M rejects w] = 0
 - If $w \notin Y$, then $\Pr[M \text{ rejects } w] \neq 0$

The complexity class coNP

- Let $Y \subseteq \{0,1\}^*$ and let $\overline{Y} = \{0,1\}^* \setminus Y$
- Fact: $Y \in NP$ if and only if $\overline{Y} \in coNP$
- coNP is the set of complements of languages in NP

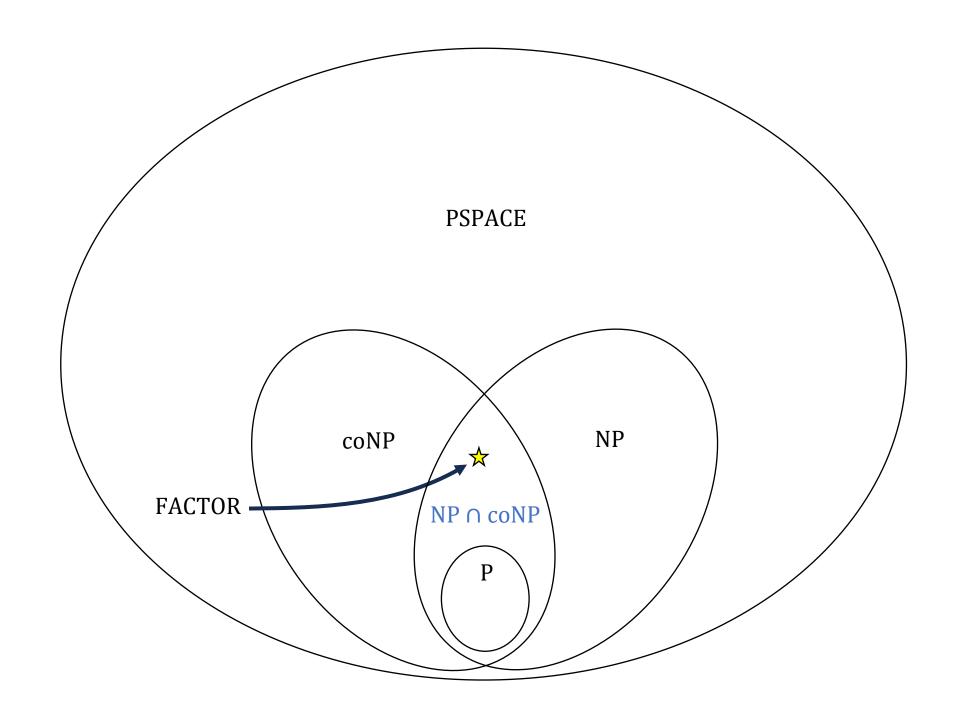
The complexity class $NP \cap coNP$

- We have shown that FACTOR \in NP and FACTOR \in coNP
- FACTOR \in NP \cap coNP
- $Y \in NP \cap coNP$ means that for every instance, there is a certificate
 - A certificate of membership for YES instances
 - A certificate of non-membership for NO instances

The NP vs. coNP problem

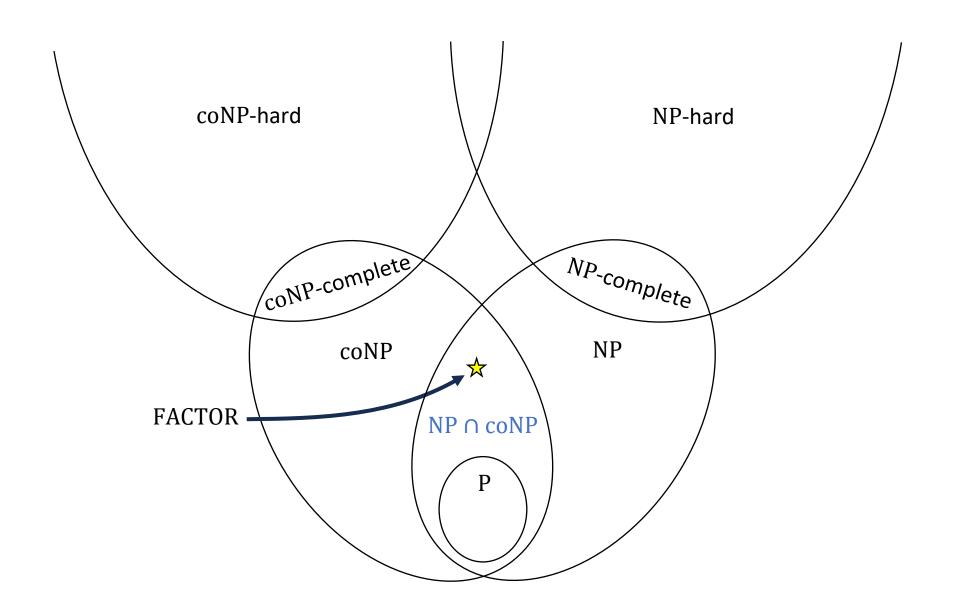
Conjecture: $NP \neq coNP$

- "NP = coNP" would mean that for every unsatisfiable circuit, there is some short certificate I could present to prove to you that a circuit is unsatisfiable
- That sounds counterintuitive! But we don't really know



NP-completeness and NP \cap coNP

- Assume NP \neq coNP
- Under this assumption, we will prove that there are no NP-complete languages in NP \cap coNP
- This will provide evidence that FACTOR is not NP-complete



coNP is closed under reductions

• Let $Y_1, Y_2 \subseteq \{0, 1\}^*$

Lemma: If $Y_1 \leq_P Y_2$ and $Y_2 \in \text{coNP}$, then $Y_1 \in \text{coNP}$

- **Proof:** Since $Y_2 \in \text{coNP}$, there is a polynomial-time "co-nondeterministic" Turing machine M that decides Y_2
- Given $w \in \{0,1\}^*$, compute $w' = \Psi(w)$, then run M on w'

NP-completeness and NP \cap coNP

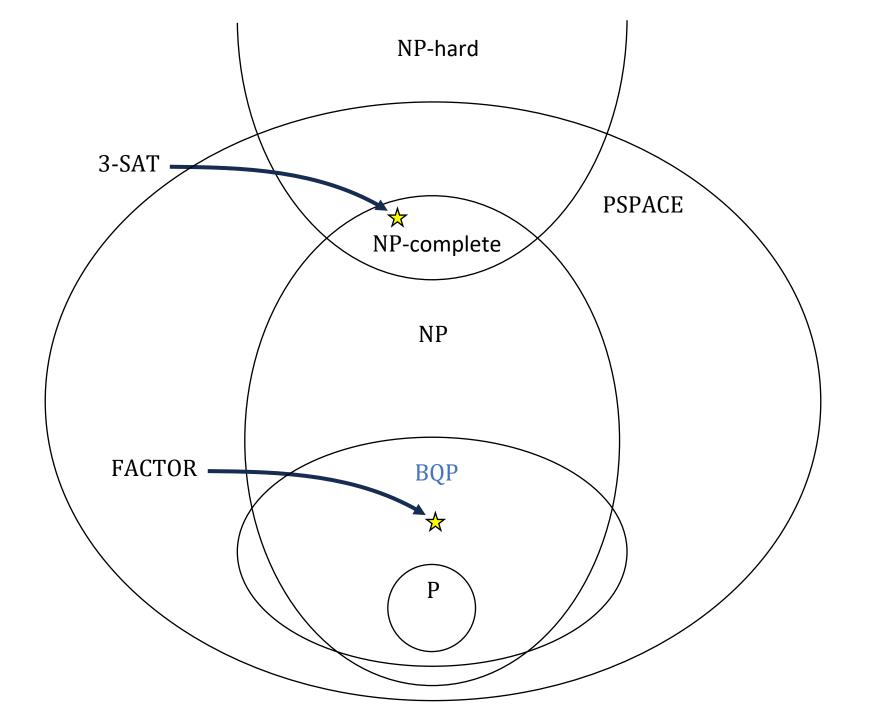
• Let $Y \in NP \cap coNP$

Claim: If Y is NP-complete, then NP = coNP

- **Proof:** For any $Z \in NP$, we have $Z \leq_P Y$ and $Y \in coNP$
- By the lemma, $Z \in \text{coNP}$, so NP $\subseteq \text{coNP}$
- By symmetry, we also have $coNP \subseteq NP$

Quantum computing is not a panacea

- FACTOR ∈ BQP, but FACTOR is probably not NP-complete
- In fact, it is conjectured that $NP \nsubseteq BQP$
- In this case, even a fully-functional quantum computer would not be able to solve NP-complete problems in polynomial time
- Even quantum computers have limitations



Limitations of quantum computers

- We have developed several techniques for identifying hardness
 - Undecidability
 - EXP-completeness
 - NP-completeness
- Those techniques are all still applicable even in a world with fullyfunctional quantum computers!
- Complexity theory is intended to be "future-proof" / "timeless"

Which problems can be solved through computation?

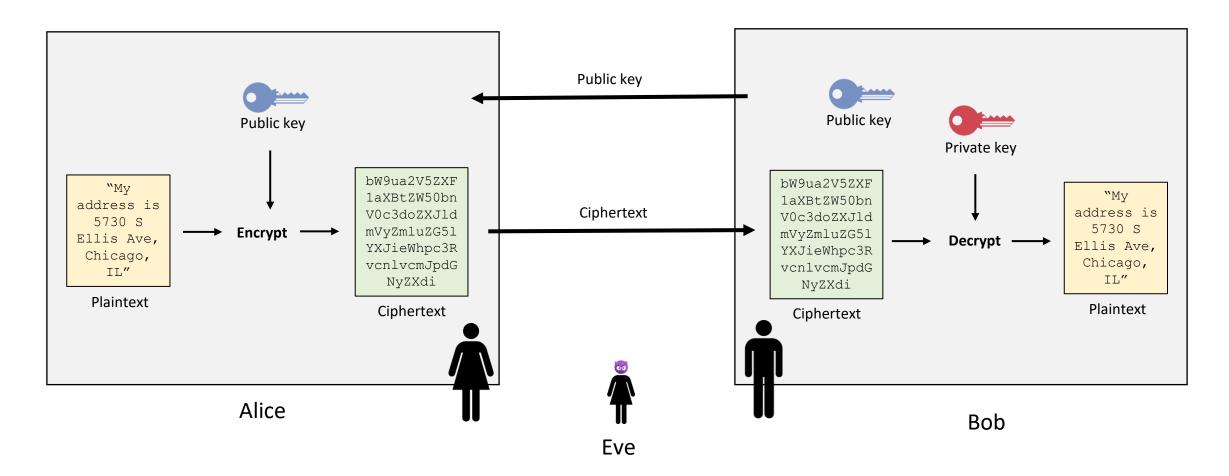
Intractability

- Main topic of this course: How to identify intractability
- Previous few days: How to cope with intractability
- **Up next:** How to exploit intractability

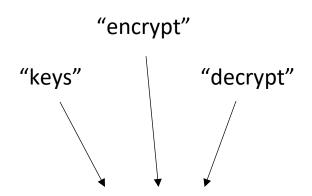
Cryptography

Public-key encryption

How can Alice send a private message to Bob?



Public-key encryption scheme



- **Definition:** A simplified public-key encryption scheme is a triple (K, E, D), where:
 - $K \subseteq \{0,1\}^* \times \{0,1\}^*$ and $E,D: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$
 - For every $w \in \{0,1\}^*$ and every $\left(k_{\mathrm{pub}},k_{\mathrm{priv}}\right) \in K$, we have $D\left(k_{\mathrm{priv}},E\left(k_{\mathrm{pub}},w\right)\right) = w$
 - *E* and *D* can be computed in polynomial time
 - For every $(k_{\text{pub}}, k_{\text{priv}}) \in K$, we have $|k_{\text{pub}}| = |k_{\text{priv}}|$
 - Intuition: Bigger keys ⇒ better security but slower encryption / decryption

Decrypting without k_{priv}

- Let (K, E, D) be a simplified public-key encryption scheme
- Claim: There exists $D_{\text{Eve}}: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ such that for every

$$w \in \{0, 1\}^*$$
 and every $(k_{\text{pub}}, k_{\text{priv}}) \in K$, we have

$$D_{\text{Eve}}\left(k_{\text{pub}}, E(k_{\text{pub}}, w)\right) = w$$

• Proof: If $E(k_{\text{pub}}, w) = E(k_{\text{pub}}, w') = y$, then $w = D(k_{\text{priv}}, y) = w'$

Complexity theory to the rescue?

- Decrypting without $k_{
 m priv}$ is always possible $\, oldsymbol{\omega} \,$
- 1970s discovery: There are public-key encryption schemes such that decrypting without k_{priv} seems to be intractable! \bigcirc
 - E.g., "RSA"
- Foundational technology for internet age
- Can we prove that these public-key encryption schemes are secure?

- Let (K, E, D) be a simplified public-key encryption scheme
- There is a function D_{Eve} such that $D_{\mathrm{Eve}}\left(k_{\mathrm{pub}}, E\left(k_{\mathrm{pub}}, w\right)\right) = w$

Theorem: If P = NP, then D_{Eve} can be computed in polynomial time $\stackrel{\textstyle \sim}{\cong}$

Theorem: If P = NP, then D_{Eve} can be computed in polynomial time \cong

- **Proof:** Let $Y = \{\langle k_{\text{pub}}, y, w \rangle : \text{ there exists } z \text{ such that } E(k_{\text{pub}}, wz) = y \}$
- $Y \in NP$: the plaintext is the certificate
- We are assuming P = NP, so therefore $Y \in P$
- Therefore, Eve can construct the plaintext bit-by-bit in polynomial time

- Disclaimer: The preceding discussion of public-key encryption is simplified
 - E.g., where do the keys come from?
- Nevertheless, the main message is accurate:
- If P = NP, then secure public-key encryption is impossible!

- Almost all theoretical cryptography assumes $P \neq NP$ and more!
- This might make you feel concerned about the uncertain foundations of computer security... ②
- Or, it might make you feel more confident that $P \neq NP$, considering how hard people try to break cryptosystems \bigcirc