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The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ coNP if there exists a randomized polynomial-time 

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 rejects 𝑤 = 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 rejects 𝑤 ≠ 0
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The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗ and let ത𝑌 = 0, 1 ∗ ∖ 𝑌

• Fact: 𝑌 ∈ NP if and only if ത𝑌 ∈ coNP

• coNP is the set of complements of languages in NP
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The complexity class NP ∩ coNP

• We have shown that FACTOR ∈ NP and FACTOR ∈ coNP

• FACTOR ∈ NP ∩ coNP

• 𝑌 ∈ NP ∩ coNP means that for every instance, there is a certificate

• A certificate of membership for YES instances

• A certificate of non-membership for NO instances
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The NP vs. coNP problem

• “NP = coNP” would mean that for every unsatisfiable circuit, there is 

some short certificate I could present to prove to you that a circuit is 

unsatisfiable

• That sounds counterintuitive! But we don’t really know
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Conjecture: NP ≠ coNP
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NP-completeness and NP ∩ coNP

• Assume NP ≠ coNP

• Under this assumption, we will prove that there are no NP-complete 

languages in NP ∩ coNP

• This will provide evidence that FACTOR is not NP-complete
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coNP is closed under reductions

• Let 𝑌1, 𝑌2 ⊆ 0, 1 ∗

• Proof: Since 𝑌2 ∈ coNP, there is a polynomial-time “co-nondeterministic” 

Turing machine 𝑀 that decides 𝑌2

• Given 𝑤 ∈ 0, 1 ∗, compute 𝑤′ = Ψ 𝑤 , then run 𝑀 on 𝑤′
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Lemma: If 𝑌1 ≤P 𝑌2 and 𝑌2 ∈ coNP, then 𝑌1 ∈ coNP



NP-completeness and NP ∩ coNP

• Let 𝑌 ∈ NP ∩ coNP

• Proof: For any 𝑍 ∈ NP, we have 𝑍 ≤P 𝑌 and 𝑌 ∈ coNP

• By the lemma, 𝑍 ∈ coNP, so NP ⊆ coNP

• By symmetry, we also have coNP ⊆ NP
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Claim: If 𝑌 is NP-complete, then NP = coNP



Quantum computing is not a panacea

• FACTOR ∈ BQP, but FACTOR is probably not NP-complete

• In fact, it is conjectured that NP ⊈ BQP

• In this case, even a fully-functional quantum computer would not be 

able to solve NP-complete problems in polynomial time

• Even quantum computers have limitations
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Limitations of quantum computers

• We have developed several techniques for identifying hardness

• Undecidability

• EXP-completeness

• NP-completeness

• Those techniques are all still applicable even in a world with fully-

functional quantum computers!

• Complexity theory is intended to be “future-proof” / “timeless”
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Which problems

can be solved

through computation?
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Intractability

• Main topic of this course: How to identify intractability

• Previous few days: How to cope with intractability

• Up next: How to exploit intractability
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Cryptography
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Public-key encryption

17
Eve

Public key

Private key

Public key

Encrypt
Decrypt

Plaintext

“My 

address is 

5730 S 

Ellis Ave, 

Chicago, 

IL”

Ciphertext

bW9ua2V5ZXF

1aXBtZW50bn

V0c3doZXJld

mVyZmluZG5l

YXJieWhpc3R

vcnlvcmJpdG

NyZXdi

Alice Bob

Ciphertext

bW9ua2V5ZXF

1aXBtZW50bn

V0c3doZXJld

mVyZmluZG5l

YXJieWhpc3R

vcnlvcmJpdG

NyZXdi

Plaintext

“My 

address is 

5730 S 

Ellis Ave, 

Chicago, 

IL”

Public key

Ciphertext

• How can Alice send a private message to Bob?



Public-key encryption scheme

• Definition: A simplified public-key encryption scheme is a triple (𝐾, 𝐸, 𝐷), 

where:

• 𝐾 ⊆ {0, 1}∗ × {0, 1}∗ and 𝐸, 𝐷: {0, 1}∗ × {0, 1}∗ → {0, 1}∗

• For every 𝑤 ∈ {0, 1}∗ and every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝐷 𝑘priv, 𝐸 𝑘pub, 𝑤 = 𝑤

• 𝐸 and 𝐷 can be computed in polynomial time

• For every 𝑘pub, 𝑘priv ∈ 𝐾, we have 𝑘pub = 𝑘priv

• Intuition: Bigger keys ⇒ better security but slower encryption / decryption
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Decrypting without 𝑘priv

• Let 𝐾, 𝐸, 𝐷  be a simplified public-key encryption scheme

• Claim: There exists 𝐷Eve: {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for every 

𝑤 ∈ {0, 1}∗ and every 𝑘pub, 𝑘priv ∈ 𝐾, we have

𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤

• Proof: If 𝐸 𝑘pub, 𝑤 = 𝐸 𝑘pub, 𝑤′ = 𝑦, then 𝑤 = 𝐷 𝑘priv, 𝑦 = 𝑤′ 
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Complexity theory to the rescue?

• Decrypting without 𝑘priv is always possible 

• 1970s discovery: There are public-key encryption schemes such that 

decrypting without 𝑘priv seems to be intractable! 

• E.g., “RSA”

• Foundational technology for internet age

• Can we prove that these public-key encryption schemes are secure?
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Cryptography and P vs. NP

• Let 𝐾, 𝐸, 𝐷  be a simplified public-key encryption scheme

• There is a function 𝐷Eve such that 𝐷Eve 𝑘pub, 𝐸 𝑘pub, 𝑤 = 𝑤
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Theorem: If P = NP, then 𝐷Eve can be computed in polynomial time 



Cryptography and P vs. NP

• Proof: Let 𝑌 = 𝑘pub, 𝑦, 𝑤 ∶ there exists 𝑧 such that 𝐸 𝑘pub, 𝑤𝑧 = 𝑦

• 𝑌 ∈ NP: the plaintext is the certificate

• We are assuming P = NP, so therefore 𝑌 ∈ P

• Therefore, Eve can construct the plaintext bit-by-bit in polynomial time
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Theorem: If P = NP, then 𝐷Eve can be computed in polynomial time 



Cryptography and P vs. NP

• Disclaimer: The preceding discussion of public-key encryption is simplified

• E.g., where do the keys come from?

• Nevertheless, the main message is accurate:

• If P = NP, then secure public-key encryption is impossible!
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Cryptography and P vs. NP

• Almost all theoretical cryptography assumes P ≠ NP and more!

• This might make you feel concerned about the uncertain foundations of 

computer security… 

• Or, it might make you feel more confident that P ≠ NP, considering how 

hard people try to break cryptosystems 
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