CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Coping with intractability

Approximation algorithm for Knapsack

• For every $w_1, \dots, w_k, v_1, \dots, v_k, W$, define

$$OPT = \max \left\{ \sum_{i \in S} v_i : S \subseteq \{1, ..., k\} \text{ and } \sum_{i \in S} w_i \le W \right\}$$

Theorem: For every $\epsilon > 0$, there exists a poly-time algorithm such that given $w_1, \ldots, w_k, v_1, \ldots, v_k, W$, the algorithm outputs $S \subseteq \{1, \ldots, k\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq (1 - \epsilon) \cdot \text{OPT}$

Approximation algorithm for Knapsack

- Algorithm: Let $v_i' = \lfloor \alpha v_i \rfloor$, where $\alpha = \frac{k}{\epsilon \cdot \max(v_1, ..., v_k)}$, so $v_i' \leq k/\epsilon$
- Output $S \subseteq \{1, ..., k\}$ that maximizes $\sum_{i \in S} v_i'$ subject to $\sum_{i \in S} w_i \leq W$
 - Polynomial time, because we can encode v_i^\prime in unary
- Correctness proof: Let $S' \subseteq \{1, ..., k\}$ be optimal. Then

$$\sum_{i \in S} v_i \ge \frac{1}{\alpha} \sum_{i \in S} v_i' \ge \frac{1}{\alpha} \sum_{i \in S'} v_i' > \frac{1}{\alpha} \sum_{i \in S'} (\alpha v_i - 1) \ge \left(\sum_{i \in S'} v_i \right) - \frac{k}{\alpha} = \text{OPT} - \epsilon \cdot \max(v_1, \dots, v_k)$$

$$\ge (1 - \epsilon) \cdot \text{OPT}$$

Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out of NP-completeness

However:

- Approximation is not always applicable
 - E.g., 3-COLORABLE is simply not an optimization problem
- Even if it's applicable, approximation is not always feasible!

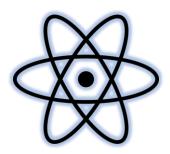
Inapproximability of the clique problem

• For a graph G, let $\omega(G)$ denote the size of the largest clique in G

Theorem: Let $\epsilon > 0$. Suppose there exists a poly-time algorithm such that given a graph G = (V, E), the algorithm outputs a clique $S \subseteq V$ satisfying $|S| \ge \epsilon \cdot \omega(G)$. Then P = NP.

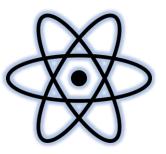
• (Proof omitted. Not on exercises / exams)

Quantum computing



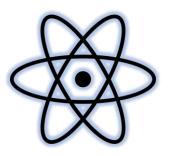
- Another approach for coping with intractability: Quantum Computing
- A quantum computer is a computational device that uses special features of quantum physics
- A detailed discussion of quantum computing is outside the scope of this course
- We will discuss only some key facts about quantum computing

Quantum computing



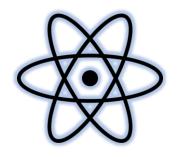
- So far, researchers have constructed rudimentary quantum computers
- There are huge ongoing efforts to build fully-functional quantum computers

Quantum complexity theory



- One can define a complexity class, BQP, consisting of all languages that could be decided in polynomial time by a fully-functional quantum computer
- The mathematical definition of BQP is beyond the scope of this course
- One can prove that $BPP \subseteq BQP \subseteq PSPACE$

Shor's algorithm

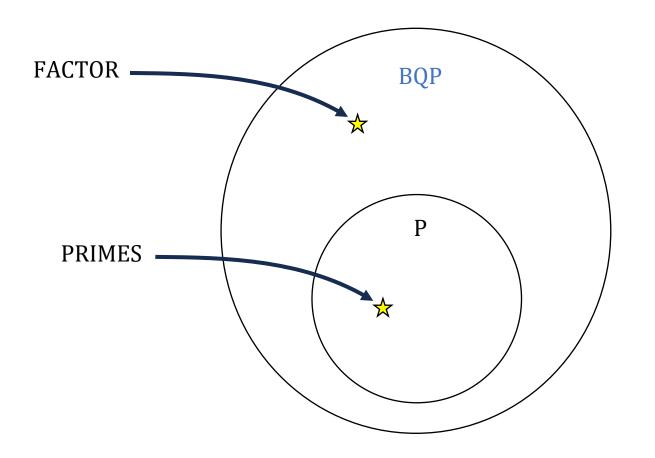


• FACTOR = $\{\langle N, K \rangle : N \text{ has a prime factor } p \leq K \}$

• Conjecture: FACTOR ∉ P

Theorem (Shor's algorithm): $FACTOR \in BQP$

FACTOR is a likely counterexample to the extended Church-Turing thesis!

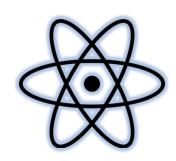


• FACTOR = $\{\langle N, K \rangle : N \text{ has a} \}$ prime factor $p \leq K\}$

• PRIMES = $\{\langle K \rangle : K \text{ is a} \}$ prime number

Quantum computing and NP-completeness

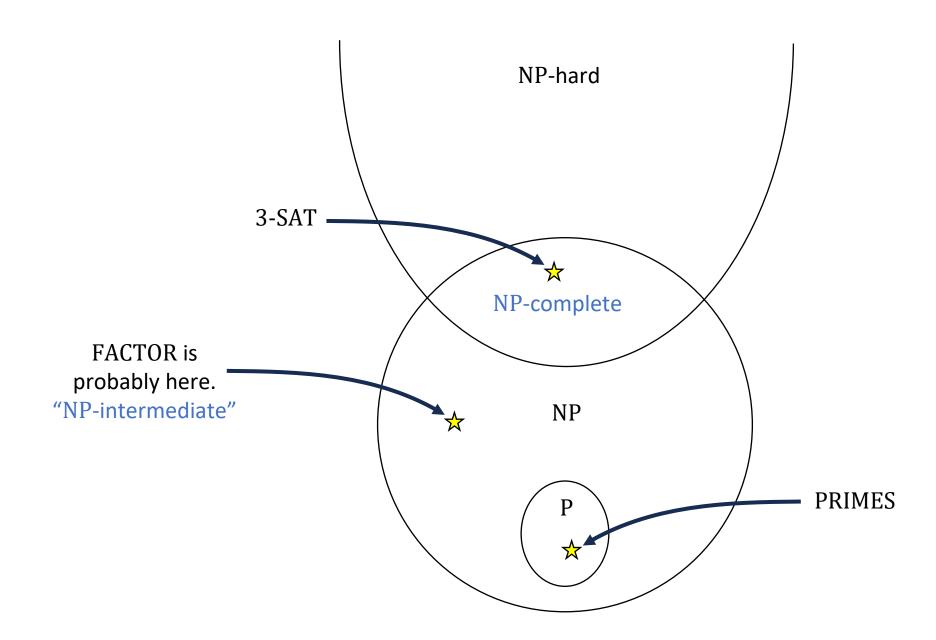
- FACTOR = $\{\langle N, K \rangle : N \text{ has a prime factor } p \leq K \}$
- FACTOR ∈ NP (guess the factor)



- Is FACTOR NP-complete?
- If yes, then NP \subseteq BQP, meaning that all NP-complete problems could be solved in polynomial time on a fully-functional quantum computer! \bigcirc

Complexity of factoring integers

- Typically, when we encounter some $Y \in NP$, either
 - we can prove $Y \in P$, or
 - we can prove that *Y* is NP-complete
- FACTOR is one of the rare exceptions to this rule
- **Conjecture:** FACTOR is neither in P nor NP-complete!



Complexity of factoring integers

- What evidence suggests that FACTOR is not NP-complete?
- Key: The complexity class coNP
- Informal definition: coNP is like NP, except that we swap the roles of

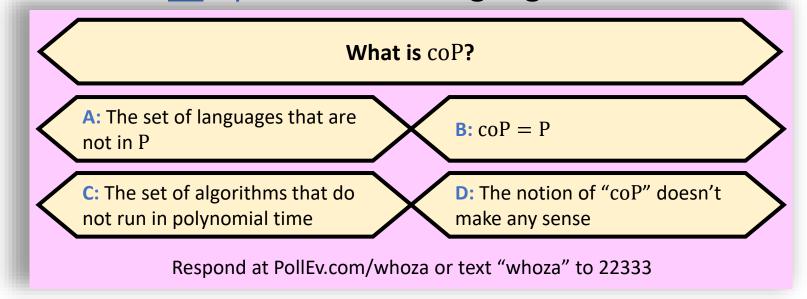
```
"yes" and "no"
```

The complexity class coNP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in \text{coNP}$ if there exists a randomized polynomial-time Turing machine M such that for every $w \in \{0, 1\}^*$:
 - If $w \in Y$, then Pr[M rejects w] = 0
 - If $w \notin Y$, then $\Pr[M \text{ rejects } w] \neq 0$

The complexity class coNP

- Let $Y \subseteq \{0,1\}^*$ and let $\overline{Y} = \{0,1\}^* \setminus Y$
- Fact: $Y \in NP$ if and only if $\overline{Y} \in coNP$
- coNP is the set of complements of languages in NP

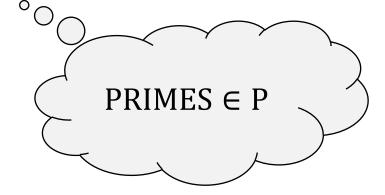


The complexity class coNP

- Example: A Boolean formula is unsatisfiable if it is not satisfiable
- Let 3-UNSAT = $\{\langle \phi \rangle : \phi \text{ is an unsatisfiable 3-CNF formula}\}$
- Then 3-UNSAT \in coNP, because a satisfying assignment is a certificate showing that $\langle \phi \rangle \notin$ 3-UNSAT

$FACTOR \in coNP$

- FACTOR = $\{\langle K, R \rangle : K \text{ has a prime factor } p \text{ such that } p \leq R \}$
- Claim: FACTOR ∈ coNP
- **Proof:** Given $\langle K, R \rangle$:
 - Nondeterministically guess numbers $d \leq \log K$ and $p_1, p_2, \dots, p_d \leq K$
 - If p_1, \dots, p_d are prime, $p_1 \cdot p_2 \cdot p_3 \cdots p_d = K$, and $\min(p_1, \dots, p_d) > R$, reject
 - Otherwise, accept



The complexity class $NP \cap coNP$

- We have shown that FACTOR ∈ NP and FACTOR ∈ coNP
- FACTOR \in NP \cap coNP
- $Y \in NP \cap coNP$ means that for every instance, there is a certificate
 - A certificate of membership for YES instances
 - A certificate of non-membership for NO instances