
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Coping with intractability

2

Approximation algorithm for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, define

OPT = max ෍

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

3

Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that

given 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such

that σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT

Approximation algorithm for Knapsack

• Algorithm: Let 𝑣𝑖
′ = 𝛼𝑣𝑖 , where 𝛼 =

𝑘

𝜖⋅max 𝑣1,…,𝑣𝑘
, so 𝑣𝑖

′ ≤ 𝑘/𝜖

• Output 𝑆 ⊆ 1, … , 𝑘 that maximizes σ𝑖∈𝑆 𝑣𝑖
′ subject to σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊

• Polynomial time, because we can encode 𝑣𝑖
′ in unary

• Correctness proof: Let 𝑆′ ⊆ 1, … , 𝑘 be optimal. Then

෍

𝑖∈𝑆

𝑣𝑖 ≥
1

𝛼
෍

𝑖∈𝑆

𝑣𝑖
′ ≥

1

𝛼
෍

𝑖∈𝑆′

𝑣𝑖
′ >

1

𝛼
෍

𝑖∈𝑆′

𝛼𝑣𝑖 − 1 ≥ ෍

𝑖∈𝑆′

𝑣𝑖 −
𝑘

𝛼
= OPT − 𝜖 ⋅ max 𝑣1, … , 𝑣𝑘

≥ 1 − 𝜖 ⋅ OPT
4

Approximation algorithms are not a panacea

• In some cases, approximation algorithms take some of the sting out

of NP-completeness

• However:

• Approximation is not always applicable

• E.g., 3-COLORABLE is simply not an optimization problem

• Even if it’s applicable, approximation is not always feasible!

5

Inapproximability of the clique problem

• For a graph 𝐺, let 𝜔 𝐺 denote the size of the largest clique in 𝐺

• (Proof omitted. Not on exercises / exams)

6

Theorem: Let 𝜖 > 0. Suppose there exists a poly-time algorithm such

that given a graph 𝐺 = 𝑉, 𝐸 , the algorithm outputs a clique 𝑆 ⊆ 𝑉

satisfying 𝑆 ≥ 𝜖 ⋅ 𝜔 𝐺 . Then P = NP.

Quantum computing

• Another approach for coping with intractability: Quantum Computing

• A quantum computer is a computational device that uses special

features of quantum physics

• A detailed discussion of quantum computing is outside the scope of

this course

• We will discuss only some key facts about quantum computing

7

Quantum computing

• So far, researchers have constructed rudimentary quantum computers

• There are huge ongoing efforts to build fully-functional quantum

computers

8

Quantum complexity theory

• One can define a complexity class, BQP, consisting of all languages that

could be decided in polynomial time by a fully-functional quantum

computer

• The mathematical definition of BQP is beyond the scope of this course

• One can prove that BPP ⊆ BQP ⊆ PSPACE

9

Shor’s algorithm

• FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• Conjecture: FACTOR ∉ P

• FACTOR is a likely counterexample to the extended Church-Turing thesis!

10

Theorem (Shor’s algorithm): FACTOR ∈ BQP

11

P

BQPFACTOR

PRIMES

• FACTOR = {

}

𝑁, 𝐾 ∶ 𝑁 has a

prime factor 𝑝 ≤ 𝐾

• PRIMES = {

}

𝐾 ∶ 𝐾 is a

prime number

Quantum computing and NP-completeness

• FACTOR = 𝑁, 𝐾 ∶ 𝑁 has a prime factor 𝑝 ≤ 𝐾

• FACTOR ∈ NP (guess the factor)

• Is FACTOR NP-complete?

• If yes, then NP ⊆ BQP, meaning that all NP-complete problems could be

solved in polynomial time on a fully-functional quantum computer!

12

Complexity of factoring integers

• Typically, when we encounter some 𝑌 ∈ NP, either

• we can prove 𝑌 ∈ P, or

• we can prove that 𝑌 is NP-complete

• FACTOR is one of the rare exceptions to this rule

• Conjecture: FACTOR is neither in P nor NP-complete!

13

14

P

NP

NP-complete

NP-hard

3-SAT

FACTOR is
probably here.

“NP-intermediate”

PRIMES

Complexity of factoring integers

• What evidence suggests that FACTOR is not NP-complete?

• Key: The complexity class coNP

• Informal definition: coNP is like NP, except that we swap the roles of

“yes” and “no”

15

The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ coNP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 rejects 𝑤 = 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 rejects 𝑤 ≠ 0

16

The complexity class coNP

• Let 𝑌 ⊆ 0, 1 ∗ and let ത𝑌 = 0, 1 ∗ ∖ 𝑌

• Fact: 𝑌 ∈ NP if and only if ത𝑌 ∈ coNP

• coNP is the set of complements of languages in NP

17

What is coP?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: The set of algorithms that do
not run in polynomial time

A: The set of languages that are
not in P

D: The notion of “coP” doesn’t
make any sense

B: coP = P

The complexity class coNP

• Example: A Boolean formula is unsatisfiable if it is not satisfiable

• Let 3-UNSAT = { 𝜙 ∶ 𝜙 is an unsatisfiable 3-CNF formula}

• Then 3-UNSAT ∈ coNP, because a satisfying assignment is a

certificate showing that ⟨𝜙⟩ ∉ 3-UNSAT

18

FACTOR ∈ coNP

• FACTOR = { 𝐾, 𝑅 ∶ 𝐾 has a prime factor 𝑝 such that 𝑝 ≤ 𝑅}

• Claim: FACTOR ∈ coNP

• Proof: Given 𝐾, 𝑅 :

• Nondeterministically guess numbers 𝑑 ≤ log 𝐾 and 𝑝1, 𝑝2, … , 𝑝𝑑 ≤ 𝐾

• If 𝑝1, … , 𝑝𝑑 are prime, 𝑝1 ⋅ 𝑝2 ⋅ 𝑝3 ⋯ 𝑝𝑑 = 𝐾, and min 𝑝1, … , 𝑝𝑑 > 𝑅, reject

• Otherwise, accept

19

PRIMES ∈ P

The complexity class NP ∩ coNP

• We have shown that FACTOR ∈ NP and FACTOR ∈ coNP

• FACTOR ∈ NP ∩ coNP

• 𝑌 ∈ NP ∩ coNP means that for every instance, there is a certificate

• A certificate of membership for YES instances

• A certificate of non-membership for NO instances

20

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Coping with intractability
	Slide 3: Approximation algorithm for Knapsack
	Slide 4: Approximation algorithm for Knapsack
	Slide 5: Approximation algorithms are not a panacea
	Slide 6: Inapproximability of the clique problem
	Slide 7: Quantum computing
	Slide 8: Quantum computing
	Slide 9: Quantum complexity theory
	Slide 10: Shor’s algorithm
	Slide 11
	Slide 12: Quantum computing and NP-completeness
	Slide 13: Complexity of factoring integers
	Slide 14
	Slide 15: Complexity of factoring integers
	Slide 16: The complexity class co NP
	Slide 17: The complexity class coNP
	Slide 18: The complexity class coNP
	Slide 19: FACTOR element of coNP
	Slide 20: The complexity class NP intersection coNP

