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The subset sum problem

( )
,...,ar, T €N and th ist
SUBSET-SUM = {{a4,...,a;, T) : Ay, .., A and there exists
L I <{1,..,k}suchthat };c,a; =T |

Theorem: SUBSET-SUM is NP-complete

* Proof: SUBSET-SUM € NP. (Why?)

* We will prove it is NP-hard by reduction from 3-SAT



Proof that 3-SAT <, SUBSET-SUM

If ¢ is a 3-CNF formula with variables x4, ..., x,, and clauses cy, ..., ¢;,, then W({¢)) = the following:

X1 Xy Xni €1 C2 Cm
an= 10 0 Does x, appearin c,? * Suppose ¢(x) —1
Az, 1 0 0!
a, 1 0 E * Ifx; =1, select ay,
Az, = 1 0 i * Ifx; =0, select ag,
‘ P i1 Does X, appearin c,,?
Axn = 1 o 1 * If only two literals in ¢; are
Az, = i 1 .. J
Integers | i _____________________ satisfied, select A
represented < ac, = 0 0 _ o
in base 8 a, = i 0 0 * If only one literal in ¢; is
Ac, = | 1 0 satisfied, select a.; and a,
ac, = i 1 0
: i : * Selected numberssumto T «
ac, = | 1
Ac,, = 1
. TI'= 1 1 1 i 3 3 3 3
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X1 Xy Xni €1 C2 Cm
______________________________ S — : 5
= 10 0 Does x; appearin ;¢ « gypnose a subset of the
Az, 1 0 0!
4 1 0! numbers sumto T
X2 :
af% B 1 O i o _ . * There are no “carries,” because
: ! t 1 Does X, appearin ¢,,?
Ay, = 1 e 1 each column has at most five
| Az, = i .- ones
ntegers | @ S —
represented < Ac, = i 0 0 * Ifay, is selected, setx; = 1
in base 8 ac, = | 0 0
a,, = | 1 0 * If ag, is selected, set x; = 0
aCZ_ B i 1 0 * Each clause must have at least
ac, = i 1 one satisfied literal «
ac, = | 1
. T= 1 1 113 3 3 3



Proof that 3-SAT <, SUBSET-SUM

If ¢ is a 3-CNF formula with variables x4, ..., x,, and clauses cy, ..., ¢;,, then W({¢)) = the following:

X1 X2 Xni €1 C2 Cm
------------------------------ TR .
gy = 10 0 Does x; appearin ¢;?  « Reduction can be
afl 1 0 0 i . 5
a, 1 0 performed in polynomial
af% - ! O i .. _ : time
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ar - 01 -
Integers | —
represented < @, = 0 0
in base 8 Ac, = 0 0
aCZ - i 1 0
ac, = i 1 0
ac,, = i 1
Ac,, = | 1
. T= 1 1 13 3 3 3
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Proving that Yygw is NP-complete (“cheat sheet”)

1. Prove that Yygw € NP

 What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that Yygw is NP-hard

* Which NP-complete language Y5 p are you reducing from?
* What is the reduction? ¥(w) = w'. How is w' defined? Polynomial time?

* YES maps to YES: Assume there is a certificate x showing w € Yy p. In terms of x, describe

a certificate y showing that w’ € Yygw.

* NO maps to NO: (Contrapositive) Assume there is a certificate y showing w’ € Yygw. In

terms of y, describe a certificate x showing that w € Yy p.



The Knapsack problem

« KNAPSACK = {{wy, ..., Wy, Vq, ..., Uy, W, V) : there exists S € {1, 2, ..., k}

such thatX;cow; < W and X v; = V}

Theorem: KNAPSACK is NP-complete

* Proof: It's in NP «

 Reduction from SUBSET-SUM:
Y({aq,..,a,,T)) ={aq,..,ay, a4, ..., a;, T, T)
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NP-completeness is everywhere

* There are thousands of known NP-complete problems!

* These problems come from many different areas of study

* Logic, graph theory, number theory, scheduling, optimization, economics,

physics, chemistry, biology, ...

 Pvs. NP is one of the most important open questions in theoretical

computer science and mathematics
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NP-complete languages stand or fall together

* If you design a poly-time algorithm for one NP-complete language, then

P = NP, so all NP-complete languages can be decided in poly time!

* If you prove that one NP-complete language cannot be decided in poly
time, then P # NP, so no NP-complete language can be decided in poly

time!
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Intractability

* This course so far: How to identify intractability

* Up next: How to cope with intractability
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Coping with intractability

e Suppose you really want to decide Y

* You find proof/evidence that Y & P (=

* Undecidability, EXP-hardness, NP-hardness...

* That doesn’t necessarily mean you’re out of luck...

* There are several approaches for coping with the factthatY & P
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Coping with intractability



Nontrivial exponential-time algorithms

e Evenif Y & P, it still might have a nontrivial algorithm. Example:

Theorem: There is an algorithm that computes the size of the

largest clique in a given n-vertex graph in time 0(1.189™).

 (Proof omitted. Not on exercises / exams)

* If your inputs happen to be relatively small, then maybe an

exponential time complexity is tolerable
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Pseudo-polynomial time algorithms

* If you have numeric inputs, you could try a pseudo-poly-time algorithm

« UNARY-VAL-KNAPSACK = {{wq, ..., Wy, 171, ..., 1Yk, W, 1") : there
exists S € {1, 2, ..., k} such that

YiesW; < W and X;c5 v; = V'}

Theorem: UNARY-VAL-KNAPSACK € P
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Approximation algorithms

* Next approach for coping with intractability: approximation algorithms

 Example: Knapsack
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Approximation algorithm for Knapsack

* For every wy, ..., Wy, V4, ..., Vg, W, define
( )

OPT = max<zvi :SC{1,..,k}and Ewi <W

\LES LES )

"

Theorem: For every € > 0, there exists a poly-time algorithm such that
given wy, ..., Wy, V4, ..., Vg, W, the algorithm outputs S € {1, ..., k} such

that Y;cow; < W and ) ;eqv; = (1 —€) - OPT
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