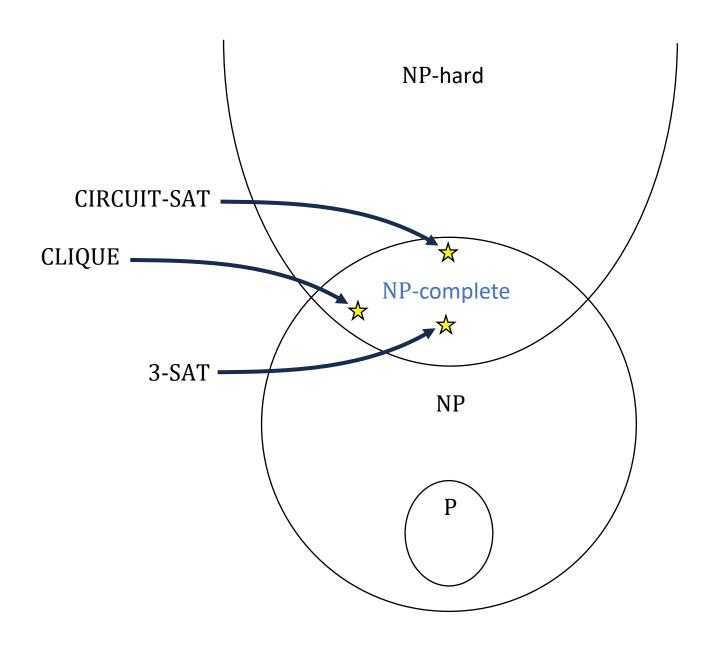
CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza



The subset sum problem

$$\text{SUBSET-SUM} = \left\{ \langle a_1, \dots, a_k, T \rangle : \begin{array}{l} a_1, \dots, a_k, T \in \mathbb{N} \text{ and there exists} \\ I \subseteq \{1, \dots, k\} \text{ such that } \sum_{i \in I} a_i = T \end{array} \right\}$$

Theorem: SUBSET-SUM is NP-complete

- **Proof:** SUBSET-SUM \in NP. (Why?)
- We will prove it is NP-hard by reduction from 3-SAT

Proof that $3\text{-SAT} \leq_P \text{SUBSET-SUM}$

If ϕ is a 3-CNF formula with variables x_1, \dots, x_n and clauses c_1, \dots, c_m , then $\Psi(\langle \phi \rangle) =$ the following:

	x_1 x_2 \cdots x_n c_1 c_2 \cdots c_m
	$a_{x_1} = 1 0 \cdots 0 1 0 \cdots 0$ Does x_2 appear in c_2 ?
Integers represented <in 8<="" base="" td=""><td>$a_{\bar{x}_1} = 1 0 \cdots 0 0 0 0$</td></in>	$a_{\bar{x}_1} = 1 0 \cdots 0 0 0 0$
	$a_{x_2} = $ 1 \cdots 0 0 1 \cdots 0
	$a_{\bar{x}_2} = $ 1 \cdots 0 1 0 \cdots 0
	$$ $$ $$ Does \bar{x}_m appear in c_m ?
	$a_{x_n} = 1 1 0 \cdots 1$
	$a_{\bar{x}_n} = $ $1 \mid 0 1 \cdots \boxed{1}$
	$a_{c_1} = $ $1 0 \cdots 0$
	$a'_{c_1} = $ $1 0 \cdots 0$
	$a_{c_2} = 1 \cdots 0$
	$a_{c_2}' = 1 \cdots 0$
	: · · · :
	$a_{c_m} = 1$
	$a'_{c_m} = 1$
	$T = \begin{bmatrix} 1 & 1 & \cdots & 1 & 3 & 3 & 3 & 3 \end{bmatrix}$

- Suppose $\phi(x) = 1$
 - If $x_i = 1$, select a_{x_i}
 - If $x_i = 0$, select $a_{\bar{x}_i}$
 - If only two literals in c_i are satisfied, select a_{c_i}
 - If only one literal in c_i is satisfied, select a_{c_i} and a_{c_i}'
 - Selected numbers sum to T

Proof that $3\text{-SAT} \leq_P \text{SUBSET-SUM}$

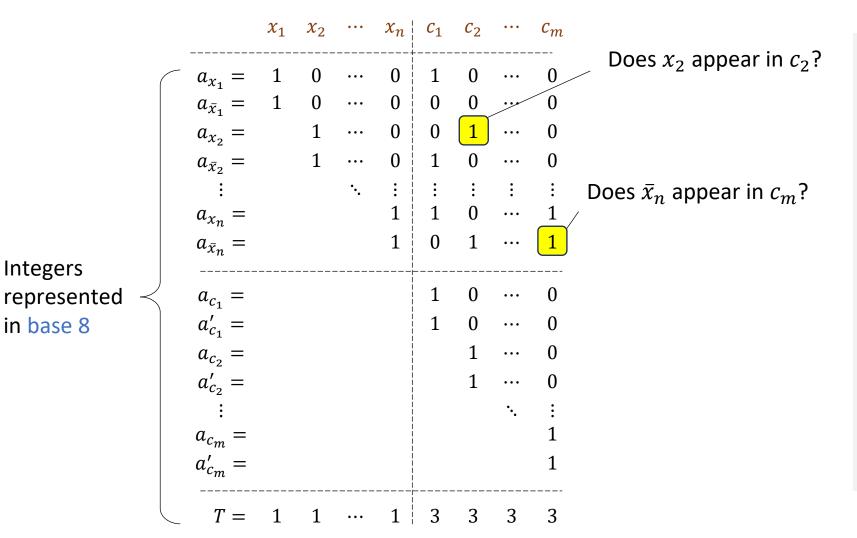
If ϕ is a 3-CNF formula with variables x_1, \dots, x_n and clauses c_1, \dots, c_m , then $\Psi(\langle \phi \rangle) =$ the following:

	x_1 x_2 \cdots x_n c_1 c_2 \cdots c_m
	$a_{x_1} = 1 0 \cdots 0 1 0 \cdots 0$ Does x_2 appear in c_2 ?
	$a_{\bar{x}_1} = 1 0 \cdots 0 0 \underline{0} \cdots 0$
	$a_{x_2} = $ 1 ··· 0 0 1 ··· 0
	$a_{\bar{x}_2} = 1 \cdots 0 1 \overline{0} \cdots 0$
	$$ $$ $$ $$ $$ $$ $$ appear in c_m ?
	$a_{x_n} = $ 1 1 0 ··· 1
	$a_{\bar{x}_n} = $ 1 0 1 \cdots 1
Integers	
represented in base 8	$a_{c_1} = $ $1 0 \cdots 0$
	$a'_{c_1} = $ $1 0 \cdots 0$
	$a_{c_2} = 1 \cdots 0$
	$a'_{c_2} = 1 \cdots 0$
	· :
	$a_{c_m} =$ 1
	$a'_{c_m} = $ 1
	$T = \begin{bmatrix} 1 & 1 & \cdots & 1 & 3 & 3 & 3 & 3 \end{bmatrix}$

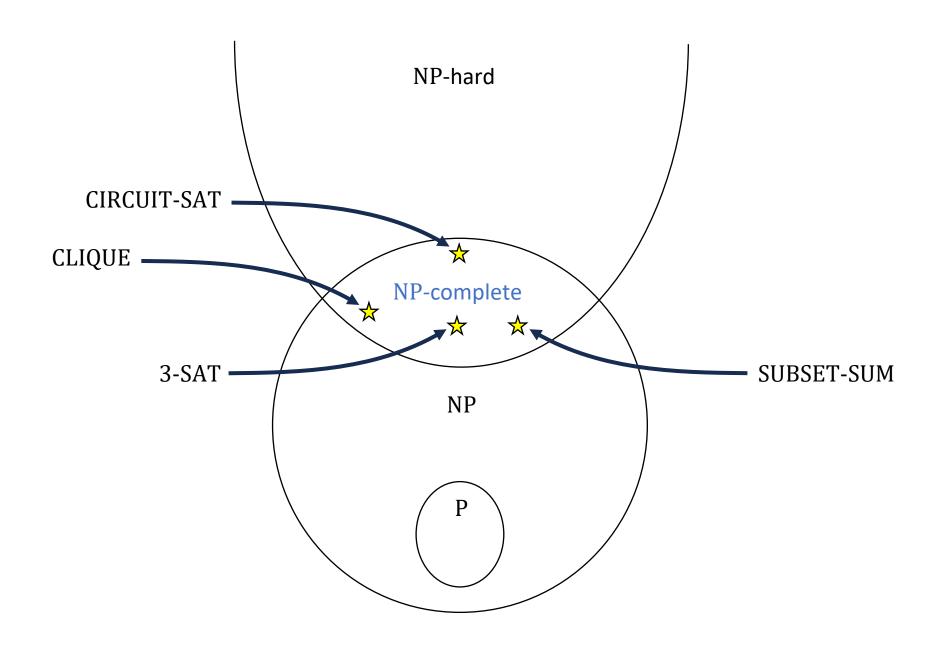
- Suppose a subset of the numbers sum to T
 - There are no "carries," because each column has at most five ones
 - If a_{x_i} is selected, set $x_i = 1$
 - If $a_{\bar{x}_i}$ is selected, set $x_i = 0$
 - Each clause must have at least one satisfied literal

Proof that $3\text{-SAT} \leq_P \text{SUBSET-SUM}$

If ϕ is a 3-CNF formula with variables x_1, \dots, x_n and clauses c_1, \dots, c_m , then $\Psi(\langle \phi \rangle) =$ the following:



Reduction can be performed in polynomial time



Proving that Y_{NEW} is NP-complete ("cheat sheet")

1. Prove that $Y_{NEW} \in NP$

• What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that Y_{NEW} is NP-hard

- Which NP-complete language Y_{OLD} are you reducing from?
- What is the reduction? $\Psi(w) = w'$. How is w' defined? Polynomial time?
- YES maps to YES: Assume there is a certificate x showing $w \in Y_{OLD}$. In terms of x, describe a certificate y showing that $w' \in Y_{NEW}$.
- NO maps to NO: (Contrapositive) Assume there is a certificate y showing $w' \in Y_{NEW}$. In terms of y, describe a certificate x showing that $w \in Y_{OLD}$.

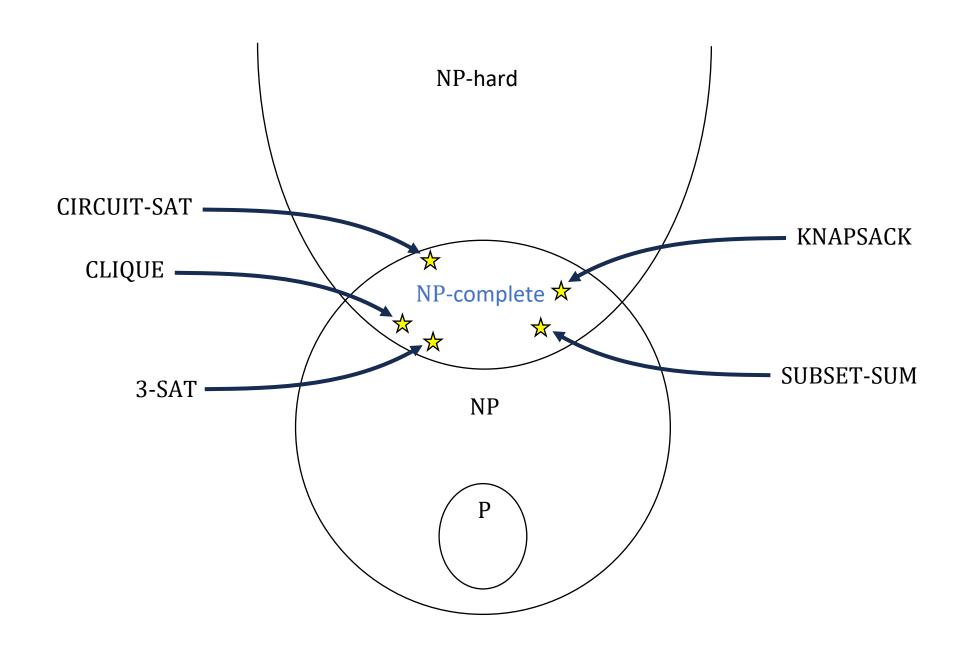
The Knapsack problem

• KNAPSACK = $\{\langle w_1, ..., w_k, v_1, ..., v_k, W, V \rangle : \text{ there exists } S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} w_i \leq W$ and $\Sigma_{i \in S} v_i \geq V \}$

Theorem: KNAPSACK is NP-complete

- **Proof:** It's in NP
- Reduction from SUBSET-SUM:

$$\Psi(\langle a_1, \dots, a_k, T \rangle) = \langle a_1, \dots, a_k, a_1, \dots, a_k, T, T \rangle$$



NP-completeness is everywhere

- There are thousands of known NP-complete problems!
- These problems come from many different areas of study
 - Logic, graph theory, number theory, scheduling, optimization, economics, physics, chemistry, biology, ...
- P vs. NP is one of the most important open questions in theoretical computer science and mathematics

NP-complete languages stand or fall together

• If you design a poly-time algorithm for one NP-complete language, then P = NP, so all NP-complete languages can be decided in poly time!

• If you prove that one NP-complete language cannot be decided in poly time, then $P \neq NP$, so no NP-complete language can be decided in poly time!

Intractability

- This course so far: How to identify intractability
- **Up next:** How to cope with intractability

Coping with intractability

- Suppose you really want to decide Y
- You find proof/evidence that $Y \notin P$
 - Undecidability, EXP-hardness, NP-hardness...
- That doesn't necessarily mean you're out of luck...
- There are several approaches for coping with the fact that $Y \notin P$

Coping with intractability

Nontrivial exponential-time algorithms

• Even if $Y \notin P$, it still might have a nontrivial algorithm. Example:

Theorem: There is an algorithm that computes the size of the largest clique in a given n-vertex graph in time $O(1.189^n)$.

- (Proof omitted. Not on exercises / exams)
- If your inputs happen to be relatively small, then maybe an exponential time complexity is tolerable

Pseudo-polynomial time algorithms

- If you have numeric inputs, you could try a pseudo-poly-time algorithm
- UNARY-VAL-KNAPSACK = $\{\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, W, 1^V \rangle$: there exists $S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} \ w_i \leq W \ \text{and} \ \Sigma_{i \in S} \ v_i \geq V \}$

Theorem: UNARY-VAL-KNAPSACK ∈ P

Approximation algorithms

- Next approach for coping with intractability: approximation algorithms
- Example: Knapsack

Approximation algorithm for Knapsack

• For every $w_1, \dots, w_k, v_1, \dots, v_k, W$, define

$$OPT = \max \left\{ \sum_{i \in S} v_i : S \subseteq \{1, ..., k\} \text{ and } \sum_{i \in S} w_i \le W \right\}$$

Theorem: For every $\epsilon > 0$, there exists a poly-time algorithm such that given $w_1, \ldots, w_k, v_1, \ldots, v_k, W$, the algorithm outputs $S \subseteq \{1, \ldots, k\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq (1 - \epsilon) \cdot \text{OPT}$