
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

2

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

CLIQUE

The subset sum problem

SUBSET-SUM = 𝑎1, … , 𝑎𝑘 , 𝑇 ∶
𝑎1, … , 𝑎𝑘 , 𝑇 ∈ ℕ and there exists

𝐼 ⊆ 1, … , 𝑘 such that σ𝑖∈𝐼 𝑎𝑖 = 𝑇

• Proof: SUBSET-SUM ∈ NP. (Why?)

• We will prove it is NP-hard by reduction from 3-SAT

3

Theorem: SUBSET-SUM is NP-complete

Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 4

Integers
represented
in base 8

If 𝜙 is a 3-CNF formula with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, then Ψ 𝜙 = the following:

• Suppose 𝜙 𝑥 = 1

• If 𝑥𝑖 = 1, select 𝑎𝑥𝑖

• If 𝑥𝑖 = 0, select 𝑎 ҧ𝑥𝑖

• If only two literals in 𝑐𝑗 are

satisfied, select 𝑎𝑐𝑗

• If only one literal in 𝑐𝑗 is

satisfied, select 𝑎𝑐𝑗
 and 𝑎𝑐𝑗

′

• Selected numbers sum to 𝑇

Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 5

Integers
represented
in base 8

If 𝜙 is a 3-CNF formula with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, then Ψ 𝜙 = the following:

• Suppose a subset of the

numbers sum to 𝑇

• There are no “carries,” because

each column has at most five

ones

• If 𝑎𝑥𝑖
 is selected, set 𝑥𝑖 = 1

• If 𝑎 ҧ𝑥𝑖
 is selected, set 𝑥𝑖 = 0

• Each clause must have at least

one satisfied literal

Does ҧ𝑥𝑛 appear in 𝑐𝑚?

Does 𝑥2 appear in 𝑐2?

Proof that 3-SAT ≤𝑃 SUBSET-SUM

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑐1 𝑐2 ⋯ 𝑐𝑚

𝑎𝑥1
= 1 0 ⋯ 0 1 0 ⋯ 0

𝑎 ҧ𝑥1
= 1 0 ⋯ 0 0 0 ⋯ 0

𝑎𝑥2
= 1 ⋯ 0 0 1 ⋯ 0

𝑎 ҧ𝑥2
= 1 ⋯ 0 1 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛

= 1 1 0 ⋯ 1

𝑎 ҧ𝑥𝑛
= 1 0 1 ⋯ 1

𝑎𝑐1
= 1 0 ⋯ 0

𝑎𝑐1
′ = 1 0 ⋯ 0

𝑎𝑐2
= 1 ⋯ 0

𝑎𝑐2
′ = 1 ⋯ 0

⋮ ⋱ ⋮
𝑎𝑐𝑚

= 1

𝑎𝑐𝑚
′ = 1

 𝑇 = 1 1 ⋯ 1 3 3 3 3 6

Integers
represented
in base 8

If 𝜙 is a 3-CNF formula with variables 𝑥1, … , 𝑥𝑛 and clauses 𝑐1, … , 𝑐𝑚, then Ψ 𝜙 = the following:

• Reduction can be

performed in polynomial

time

7

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

CLIQUE

SUBSET-SUM

Proving that 𝑌NEW is NP-complete (“cheat sheet”)

1. Prove that 𝑌NEW ∈ NP

• What is the certificate? How can you verify a purported certificate in polynomial time?

2. Prove that 𝑌NEW is NP-hard

• Which NP-complete language 𝑌OLD are you reducing from?

• What is the reduction? Ψ 𝑤 = 𝑤′. How is 𝑤′ defined? Polynomial time?

• YES maps to YES: Assume there is a certificate 𝑥 showing 𝑤 ∈ 𝑌OLD. In terms of 𝑥, describe

a certificate 𝑦 showing that 𝑤′ ∈ 𝑌NEW.

• NO maps to NO: (Contrapositive) Assume there is a certificate 𝑦 showing 𝑤′ ∈ 𝑌NEW. In

terms of 𝑦, describe a certificate 𝑥 showing that 𝑤 ∈ 𝑌OLD.
8

The Knapsack problem

• KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘}

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

• Proof: It’s in NP

• Reduction from SUBSET-SUM:

Ψ 𝑎1, … , 𝑎𝑘 , 𝑇 = ⟨𝑎1, … , 𝑎𝑘 , 𝑎1, … , 𝑎𝑘 , 𝑇, 𝑇⟩
9

Theorem: KNAPSACK is NP-complete

10

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

CLIQUE

SUBSET-SUM

KNAPSACK

NP-completeness is everywhere

• There are thousands of known NP-complete problems!

• These problems come from many different areas of study

• Logic, graph theory, number theory, scheduling, optimization, economics,

physics, chemistry, biology, …

• P vs. NP is one of the most important open questions in theoretical

computer science and mathematics

11

NP-complete languages stand or fall together

• If you design a poly-time algorithm for one NP-complete language, then

P = NP, so all NP-complete languages can be decided in poly time!

• If you prove that one NP-complete language cannot be decided in poly

time, then P ≠ NP, so no NP-complete language can be decided in poly

time!

12

Intractability

• This course so far: How to identify intractability

• Up next: How to cope with intractability

13

Coping with intractability

• Suppose you really want to decide 𝑌

• You find proof/evidence that 𝑌 ∉ P

• Undecidability, EXP-hardness, NP-hardness…

• That doesn’t necessarily mean you’re out of luck…

• There are several approaches for coping with the fact that 𝑌 ∉ P

14

Coping with intractability

15

Nontrivial exponential-time algorithms

• Even if 𝑌 ∉ P, it still might have a nontrivial algorithm. Example:

• (Proof omitted. Not on exercises / exams)

• If your inputs happen to be relatively small, then maybe an

exponential time complexity is tolerable

16

Theorem: There is an algorithm that computes the size of the

largest clique in a given 𝑛-vertex graph in time 𝑂 1.189𝑛 .

Pseudo-polynomial time algorithms

• If you have numeric inputs, you could try a pseudo-poly-time algorithm

• UNARY-VAL-KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝑊, 1𝑉 ∶ there

 exists 𝑆 ⊆ {1, 2, … , 𝑘} such that

 Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

17

Theorem: UNARY-VAL-KNAPSACK ∈ P

Approximation algorithms

• Next approach for coping with intractability: approximation algorithms

• Example: Knapsack

18

Approximation algorithm for Knapsack

• For every 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, define

OPT = max ෍

𝑖∈𝑆

𝑣𝑖 ∶ 𝑆 ⊆ {1, … , 𝑘} and ෍

𝑖∈𝑆

𝑤𝑖 ≤ 𝑊

19

Theorem: For every 𝜖 > 0, there exists a poly-time algorithm such that

given 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, the algorithm outputs 𝑆 ⊆ {1, … , 𝑘} such

that σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and σ𝑖∈𝑆 𝑣𝑖 ≥ 1 − ϵ ⋅ OPT

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2
	Slide 3: The subset sum problem
	Slide 4: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 5: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 6: Proof that 3‑SAT less than or equal to sub cap P , SUBSET‑SUM
	Slide 7
	Slide 8: Proving that cap Y sub NEW is NP-complete (“cheat sheet”)
	Slide 9: The Knapsack problem
	Slide 10
	Slide 11: NP-completeness is everywhere
	Slide 12: NP-complete languages stand or fall together
	Slide 13: Intractability
	Slide 14: Coping with intractability
	Slide 15: Coping with intractability
	Slide 16: Nontrivial exponential-time algorithms
	Slide 17: Pseudo-polynomial time algorithms
	Slide 18: Approximation algorithms
	Slide 19: Approximation algorithm for Knapsack

