CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

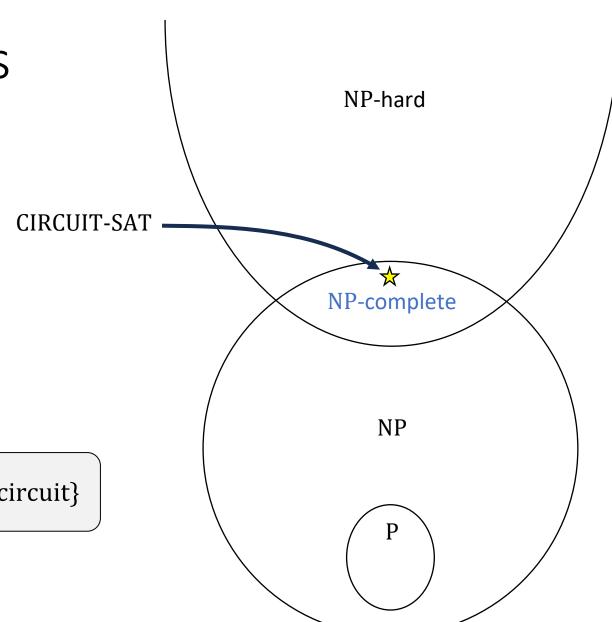
NP-hardness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** Y is NP-hard if, for every $L \in NP$, we have $L \leq_P Y$
- Interpretation:
 - Y is at least as hard as any language in NP
 - Every problem in NP is basically a special case of Y

NP-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** Y is NP-complete if Y is NP-hard and $Y \in NP$
- The NP-complete languages are the hardest languages in NP
- If Y is NP-complete, then the language Y can be said to "capture" / "express" the entire complexity class NP

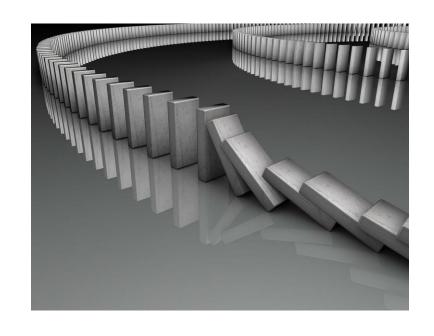
NP-completeness



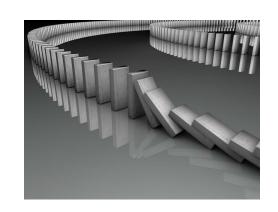
CIRCUIT-SAT = $\{\langle C \rangle : C \text{ is a satisfiable circuit}\}$

What else is NP-complete?

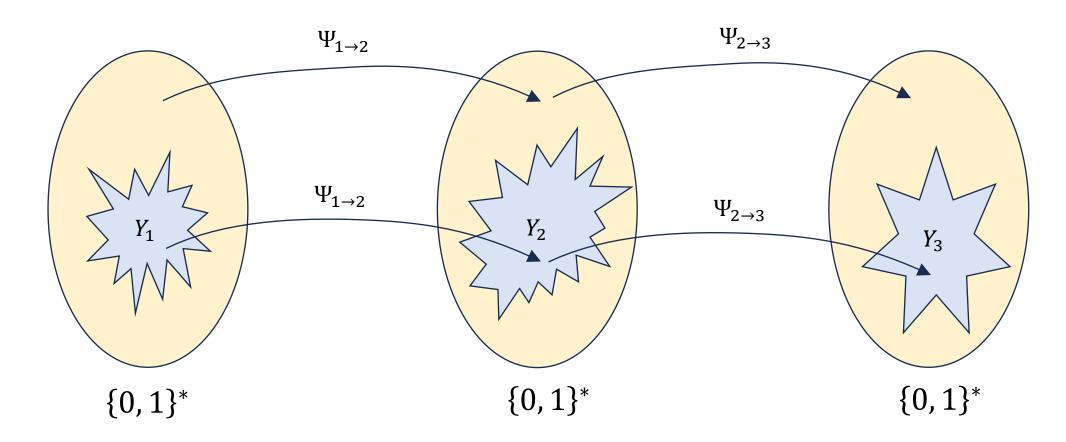
- We showed that CIRCUIT-SAT is NP-complete
- This will help us to prove that other problems,
 such as CLIQUE, are also NP-complete
- Idea: Chain reductions together



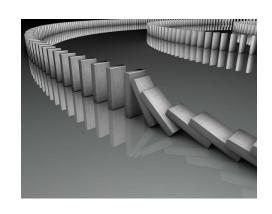
Chaining reductions together



• If $Y_1 \leq_P Y_2 \leq_P Y_3$, then $Y_1 \leq_P Y_3$

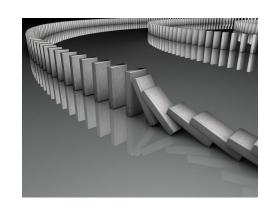


Chaining reductions together



- Let $Y_{\text{OLD}}, Y_{\text{NEW}} \subseteq \{0, 1\}^*$
- Claim: If $Y_{\rm OLD}$ is NP-hard and $Y_{\rm OLD} \leq_{\rm P} Y_{\rm NEW}$, then $Y_{\rm NEW}$ is NP-hard
- **Proof:** Let $L \in NP$
- Then $L \leq_{\mathsf{P}} Y_{\mathsf{OLD}} \leq_{\mathsf{P}} Y_{\mathsf{NEW}}$
- Therefore, $L \leq_{\mathbf{P}} Y_{\mathbf{NEW}}$

Roadmap



- We will define a language called "3-SAT"
- We will prove CIRCUIT-SAT $\leq_P 3$ -SAT $\leq_P CLIQUE$
- This will show that CLIQUE is NP-hard

k-CNF formulas

- Recall: A CNF formula is an "AND of ORs of literals"
- **Definition:** A k-CNF formula is a CNF formula in which every clause has at most k literals
- Example of a 3-CNF formula with two clauses:

$$\phi = (x_1 \vee \bar{x}_2 \vee \bar{x}_6) \wedge (x_5 \vee x_1 \vee x_2)$$

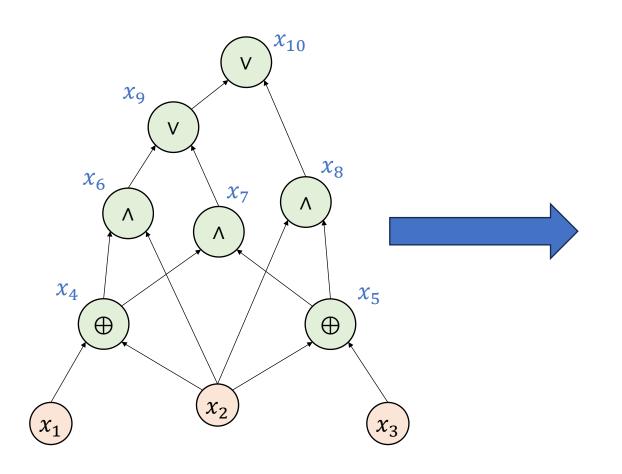
The Cook-Levin Theorem

• Define k-SAT = $\{\langle \phi \rangle : \phi \text{ is a satisfiable } k$ -CNF formula $\}$

The Cook-Levin Theorem: 3-SAT is NP-complete

- **Proof step 1:** 3-SAT \in NP. (What is the certificate?)
- **Proof step 2:** We need to show that 3-SAT is NP-hard
 - Reduction from CIRCUIT-SAT

Step 1: Circuit ⇒ Program



- $x_4 \leftarrow x_1 \oplus x_2$
- $x_5 \leftarrow x_2 \oplus x_3$
- $x_6 \leftarrow x_4 \wedge x_2$
- $x_7 \leftarrow x_4 \wedge x_5$
- $x_8 \leftarrow x_2 \wedge x_5$
- $x_9 \leftarrow x_6 \lor x_7$
- $x_{10} \leftarrow x_9 \lor x_8$
- Return x_{10}

Circuit (3 input variables)

Program (3 input variables)

Step 2: Program ⇒ Formula

•
$$x_4 \leftarrow x_1 \oplus x_2$$

•
$$x_5 \leftarrow x_2 \oplus x_3$$

- $x_6 \leftarrow x_4 \land x_2$
- $x_7 \leftarrow x_4 \wedge x_5$
- $x_8 \leftarrow x_2 \land x_5$
- $x_9 \leftarrow x_6 \vee x_7$
- $x_{10} \leftarrow x_9 \vee x_8$
- Return x_{10}

$$(x_4 == (x_1 \oplus x_2))$$

$$\wedge (x_5 == (x_2 \oplus x_3))$$

$$\wedge (x_6 == (x_4 \wedge x_2))$$

$$\wedge (x_7 == (x_4 \wedge x_5))$$

$$\wedge (x_8 == (x_2 \wedge x_5))$$

$$\wedge (x_9 == (x_6 \vee x_7))$$

$$\wedge (x_{10} == (x_9 \vee x_8))$$

$$\wedge (x_{10})$$

Program (3 input variables)

Formula (10 input variables)

Let $\mathcal C$ be the initial circuit and let ϕ be the final 3-CNF formula. Which of the following is false? Step A: C is satisfiable if and only if ϕ B: $|\langle \phi \rangle| \leq \text{poly}(|\langle C \rangle|)$ is satisfiable C: The number of clauses in ϕ is **D**: C and ϕ compute the same $(x_4 == (x^4)$ $\vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_1 \vee \bar{x}_2)$ $\Theta(\text{size of }C)$ Boolean function $\vee x_3) \wedge (\bar{x}_5 \vee \bar{x}_2 \vee \bar{x}_3)$ $\wedge (x_5 == (x_5 + x_5))$ Respond at PollEv.com/whoza or text "whoza" to 22333 $\wedge (\bar{x}_6 \vee x_4) \wedge (\bar{x}_6 \vee x_2) \wedge (\bar{x}_4 \vee \bar{x}_2 \vee x_6)$ $\wedge (x_6 == (x_4 \wedge x_2))$ $\wedge (\bar{x}_7 \vee x_4) \wedge (\bar{x}_7 \vee x_5) \wedge (\bar{x}_4 \vee \bar{x}_5 \vee x_7)$ **Every Boolean** $\wedge (x_7 == (x_4 \wedge x_5))$ $\wedge (\bar{x}_8 \vee x_2) \wedge (\bar{x}_8 \vee x_5) \wedge (\bar{x}_2 \vee \bar{x}_5 \vee x_8)$ function has a CNF $\wedge (x_8 == (x_2 \wedge x_5))$ representation! $\wedge (\bar{x}_9 \vee x_6 \vee x_7) \wedge (x_9 \vee \bar{x}_6) \wedge (x_9 \vee \bar{x}_7)$ $\wedge (x_9 == (x_6 \vee x_7))$ $\wedge (\bar{x}_{10} \vee x_9 \vee x_8) \wedge (x_{10} \vee \bar{x}_9) \wedge (x_{10} \vee \bar{x}_8)$ $\wedge \left(x_{10} == \left(x_9 \vee x_8 \right) \right)$ $\Lambda(x_{10})$

3-CNF Formula (10 input variables)

Formula (10 input variables)

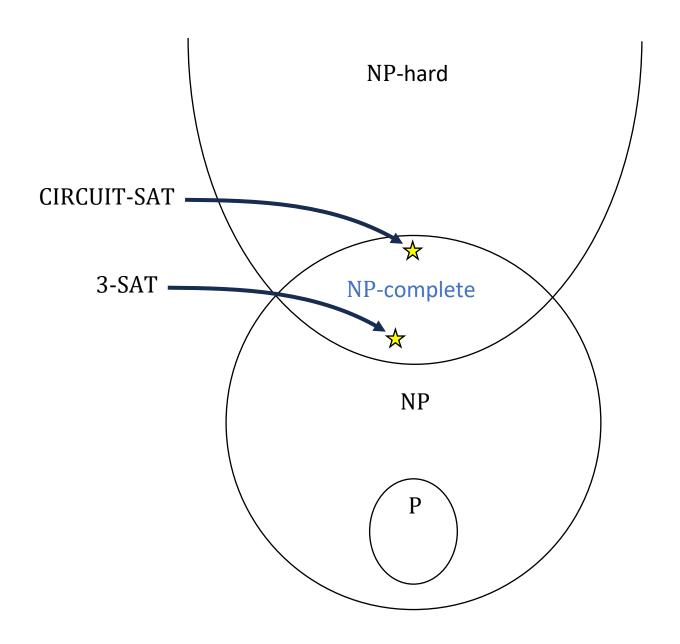
 $\Lambda(x_{10})$

Reduction correctness

- Let the gates of C be g_1, \dots, g_m (topological order)
- Claim: C is satisfiable if and only if ϕ is satisfiable
- **Proof:** (\Rightarrow) Suppose $C(x_1, ..., x_n) = 1$
- Let $x_{n+i} = g_i(x_1, \dots, x_n)$
- Then $\phi(x_1, ..., x_{n+m}) = 1$

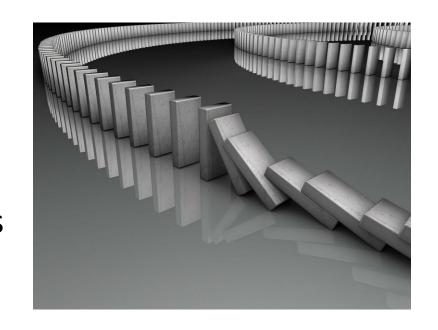
Reduction correctness

- Let the gates of C be g_1, \ldots, g_m (topological order)
- Claim: C is satisfiable if and only if ϕ is satisfiable
- Proof: (\Leftarrow) Suppose $\phi(x_1, ..., x_{n+m}) = 1$
- Then $x_{n+i} = g_i(x_1, ..., x_n)$ for every i by induction
- Furthermore, $x_{n+m} = 1$
- Therefore, $C(x_1, ..., x_n) = 1$



Chaining reductions together

• 3-SAT is the starting point for many NP-hardness proofs



We are finally ready to prove that CLIQUE is NP-complete

CLIQUE is NP-complete

• Recall CLIQUE = $\{\langle G, k \rangle : G \text{ contains a } k\text{-clique}\}$

Theorem: CLIQUE is NP-complete

- **Proof:** We showed CLIQUE ∈ NP in a previous class
- To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

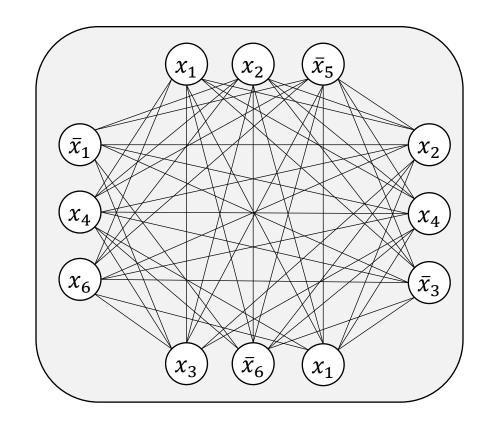
Proof that $3-SAT \leq_P CLIQUE$

- Let ϕ be a 3-CNF formula (an instance of 3-SAT)
- Reduction: $\Psi(\langle \phi \rangle) = \langle G, k \rangle$
 - k is the number of clauses in ϕ
 - G is a graph on $\leq 3k$ vertices defined as follows

Reduction from 3-SAT to CLIQUE

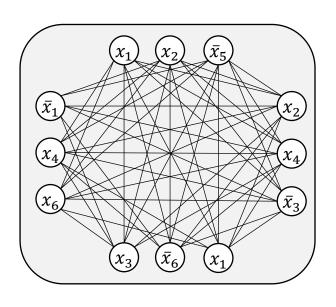
- For each clause $(\ell_1 \lor \ell_2 \lor \ell_3)$, create a "group" of three vertices labeled ℓ_1,ℓ_2,ℓ_3
 - (If the clause only has one or two literals, then only use one or two vertices)
- Put an edge $\{u,v\}$ if u and v are in different groups and u and v do not have contradictory labels $(x_i \text{ and } \bar{x_i})$

• E.g., $\phi = (x_1 \lor x_2 \lor \bar{x}_5) \land (\bar{x}_1 \lor x_4 \lor x_6)$ $\land (x_2 \lor x_4 \lor \bar{x}_3) \land (x_3 \lor \bar{x}_6 \lor x_1)$



YES maps to YES

- Suppose there exists x such that $\phi(x) = 1$
- In each clause, at least one literal is satisfied by x



- Therefore, in each group, at least one vertex is "satisfied by x," i.e., it is labeled by a literal that is satisfied by x
- Let S be a set consisting of one satisfied vertex from each group
- Then S is a k-clique (vertices in S cannot have contradictory labels)

NO maps to NO

Suppose G has a k-clique S

- $\overline{x_1}$ $\overline{x_2}$ $\overline{x_5}$ $\overline{x_2}$ $\overline{x_2}$ $\overline{x_3}$ $\overline{x_6}$ $\overline{x_1}$
- Let x be an assignment that satisfies each vertex in S
 - This exists because no two vertices in S have contradictory labels
- S cannot contain two vertices from a single group, and |S|=k, so S must contain one vertex from each group
- Therefore, x satisfies at least one literal in each clause, so $\phi(x)=1$