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NP-hardness

e letY € {0,1}"
* Definition: Y is NP-hard if, for every L € NP, we have L <p Y

* Interpretation:
* Y is at least as hard as any language in NP

* Every problem in NP is basically a special case of Y



NP-completeness

e letY € {0,1}"
* Definition: Y is NP-complete if Y is NP-hard and Y € NP
* The NP-complete languages are the hardest languages in NP

* If Y is NP-complete, then the language Y can be said to “capture” /

“express” the entire complexity class NP



NP-completeness

NP-hard

CIRCUIT-SAT

¥
NP-complete

[ CIRCUIT-SAT = {(C) : C is a satisfiable circuit} }
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 We showed that CIRCUIT-SAT is NP-complete

 This will help us to prove that other problems,

such as CLIQUE, are also NP-complete

* Idea: Chain reductions together
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Chaining reductions together

° |f Yl Sp YZ Sp Y3, then Yl Sp Y3

0,1} 0,1} {0,1}



Chaining reductions together

* Let Yorp, Ynew S {0, 1}

* Claim: If Yo p is NP-hard and Yg1.p <p YneEw, then Yygw is NP-hard
* Proof: Let L € NP

* Then L <p Yor1p <p YnEW

* Therefore, L <p Yngw



Roadmap

 We will define a language called “3-SAT”
* We will prove CIRCUIT-SAT <p 3-SAT <p CLIQUE

* This will show that CLIQUE is NP-hard
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k-CNF formulas

e Recall: A CNF formula is an “AND of ORs of literals”

* Definition: A k-CNF formula is a CNF formula in which every clause

has at most k literals

 Example of a 3-CNF formula with two clauses:

b=, Vi, Vig) AN(xsVxyVxy)



The Cook-Levin Theorem

* Define k-SAT = {{(¢) : ¢ is a satisfiable k-CNF formula}

The Cook-Levin Theorem: 3-SAT is NP-complete

* Proof step 1: 3-SAT € NP. (What is the certificate?)

* Proof step 2: We need to show that 3-SAT is NP-hard

e Reduction from CIRCUIT-SAT
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Step 1: Circuit = Program

Circuit (3 input variables)

Xq < X1 P x,
Xg < Xy D x3
Xg < X4 N\ Xy
X7 — X4 N\ Xg
Xg < Xy N\ Xg
Xg &« Xg V X7
X109 < X9 V Xg

Return x4

Program (3 input variables)
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Step 2: Program = Formula

Xq < X1 D Xy
X5 < Xy D x3
Xe < X4 N\ X5
X7 & X4 N\ Xs
Xg < X5 N\ Xg
Xg < Xg V X7
X109 < X9 V Xg

Return x4

Program (3 input variables)

[

(x4 == (1 @ x2))
A (x5 == (x, @ x3))
A (x6 == (x4 A x3))
A (x; == (x4 Ax5))
A (xg == (x5 A x5))
A (xg == (xg V x7))
A (x19 == (x9 V x3))

A (x10)

Formula (10 input variables)
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< Let C be the initial circuit and let ¢

be the final 3-CNF formula. >

Which of the following is false?

Step :z

A: C is satisfiable if and only if ¢ _
< is satisfiable >< B: (@)l < poly(KOI) >

C: The number of clauses in ¢ is
(x4 == (a O(size of C)

D: C and ¢ compute the same _ _ _
Boolean function Vxz) A (X V Xy VX)

A (X10)

A(X7 V) A(X;Vxe)A(X,VXsVXy)

' A(XgVxy)A(xgVaxs)A (X, VXsVxg)

A(XgVxgVxs)A(xgViXg)A(xgV Xy)

A (X19 V Xg V xg) A (X109 V X9) A (X109 V Xg)

A (xs =3 (9‘ Respond at PollEv.com/whoza or text “whoza” to 22333 v x3) A (f5 ViV f3)
AN (f6 \% .'X,'4) N\ (f6 \% x2) AN (fll- \% .')EZ \% x6)

Every Boolean
function has a CNF
representation!

Formula (10 input variables)

3-CNF Formula (10 input variables)
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Reduction correctness

* Let the gates of C be g4, ..., g, (topological order)
* Claim: C is satisfiable if and only if ¢ is satisfiable
* Proof: (=) Suppose C(xq, ..., x,,) =1

* Let xp1; = 9i(xy, o0, Xn)

* Then ¢p(xq, ..., Xp4m) =1
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Reduction correctness

* Let the gates of C be g4, ..., 9., (topological order)
* Claim: C is satisfiable if and only if ¢ is satisfiable
* Proof: (<) Suppose ¢p(xq, .., Xptm) =1

* Then x,,4; = g;(xq, ..., x,,) for every i by induction
* Furthermore, x,,., = 1

* Therefore, C(x¢, ..., x,) =1
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CIRCUIT-SAT

3-SAT

NP-hard

w

NP-complete

w

NP
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Chaining reductions together

e 3-SAT is the starting point for many NP-hardness

proofs

* We are finally ready to prove that CLIQUE is NP-complete
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CLIQUE is NP-complete

 Recall CLIQUE = {{G, k) : G contains a k-clique}

Theorem: CLIQUE is NP-complete

* Proof: We showed CLIQUE € NP in a previous class

* To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT
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Proof that 3-SAT <p CLIQUE

* Let ¢ be a 3-CNF formula (an instance of 3-SAT)

 Reduction: W ({¢)) = (G, k)

* k isthe number of clauses in ¢

e G isagraph on < 3k vertices defined as follows
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Reduction from 3-SAT to CLIQUE

* For each clause (£, V £, V £3), createa * B8, @ = (x1 V2 VX5) A (X1 VgV Xe)

“sroup” of three vertices labeled Ay Vixg V) A(xs VTV ixg)

£1, '€2; £3 / X4 X5 Xs \

e (If the clause only has one or two literals,

then only use one or two vertices) X1 ‘ X2
* Put an edge {u, v} ifuand varein : &
different groups and u and v do not & X3

have contradictory labels (x; and X;) \ ) (%) (% /
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YES maps to YES

* Suppose there exists x such that ¢p(x) =1 %

* In each clause, at least one literal is satisfied by x

* Therefore, in each group, at least one vertex is “satisfied by x,” i.e., it

is labeled by a literal that is satisfied by x
* Let S be a set consisting of one satisfied vertex from each group

* Then S is a k-clique (vertices in S cannot have contradictory labels)
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NO maps to NO o

e Suppose G has a k-clique S

* Let x be an assignment that satisfies each vertex in §

* This exists because no two vertices in S have contradictory labels

S cannot contain two vertices from a single group, and |S| = k, so S must

contain one vertex from each group

* Therefore, x satisfies at least one literal in each clause, so ¢p(x) =1
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