
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

NP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-hard if, for every 𝐿 ∈ NP, we have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in NP

• Every problem in NP is basically a special case of 𝑌

2

NP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-complete if 𝑌 is NP-hard and 𝑌 ∈ NP

• The NP-complete languages are the hardest languages in NP

• If 𝑌 is NP-complete, then the language 𝑌 can be said to “capture” /

“express” the entire complexity class NP

3

NP-completeness

4

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

CIRCUIT-SAT = { 𝐶 ∶ 𝐶 is a satisfiable circuit}

What else is NP-complete?

• We showed that CIRCUIT-SAT is NP-complete

• This will help us to prove that other problems,

such as CLIQUE, are also NP-complete

• Idea: Chain reductions together

5

Chaining reductions together

• If 𝑌1 ≤P 𝑌2 ≤P 𝑌3, then 𝑌1 ≤P 𝑌3

6
0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ1→2

Ψ1→2

0, 1 ∗

𝑌3

Ψ2→3

Ψ2→3

Chaining reductions together

• Let 𝑌OLD, 𝑌NEW ⊆ 0, 1 ∗

• Claim: If 𝑌OLD is NP-hard and 𝑌OLD ≤P 𝑌NEW, then 𝑌NEW is NP-hard

• Proof: Let 𝐿 ∈ NP

• Then 𝐿 ≤P 𝑌OLD ≤P 𝑌NEW

• Therefore, 𝐿 ≤P 𝑌NEW

7

Roadmap

• We will define a language called “3-SAT”

• We will prove CIRCUIT-SAT ≤P 3-SAT ≤P CLIQUE

• This will show that CLIQUE is NP-hard

8

𝑘-CNF formulas

• Recall: A CNF formula is an “AND of ORs of literals”

• Definition: A 𝑘-CNF formula is a CNF formula in which every clause

has at most 𝑘 literals

• Example of a 3-CNF formula with two clauses:

𝜙 = 𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥6 ∧ 𝑥5 ∨ 𝑥1 ∨ 𝑥2

9

The Cook-Levin Theorem

• Define 𝑘-SAT = { 𝜙 ∶ 𝜙 is a satisfiable 𝑘-CNF formula}

• Proof step 1: 3-SAT ∈ NP. (What is the certificate?)

• Proof step 2: We need to show that 3-SAT is NP-hard

• Reduction from CIRCUIT-SAT

10

The Cook-Levin Theorem: 3-SAT is NP-complete

Step 1: Circuit ⇒ Program

11

Circuit (3 input variables)

⊕

𝑥1

𝑥2
𝑥3

⊕

∧
∧

∧

∨

∨

𝑥4 𝑥5

𝑥6 𝑥7

𝑥8

𝑥9

𝑥10

• 𝑥4 ← 𝑥1 ⊕ 𝑥2

• 𝑥5 ← 𝑥2 ⊕ 𝑥3

• 𝑥6 ← 𝑥4 ∧ 𝑥2

• 𝑥7 ← 𝑥4 ∧ 𝑥5

• 𝑥8 ← 𝑥2 ∧ 𝑥5

• 𝑥9 ← 𝑥6 ∨ 𝑥7

• 𝑥10 ← 𝑥9 ∨ 𝑥8

• Return 𝑥10

Program (3 input variables)

Step 2: Program ⇒ Formula

12

• 𝑥4 ← 𝑥1 ⊕ 𝑥2

• 𝑥5 ← 𝑥2 ⊕ 𝑥3

• 𝑥6 ← 𝑥4 ∧ 𝑥2

• 𝑥7 ← 𝑥4 ∧ 𝑥5

• 𝑥8 ← 𝑥2 ∧ 𝑥5

• 𝑥9 ← 𝑥6 ∨ 𝑥7

• 𝑥10 ← 𝑥9 ∨ 𝑥8

• Return 𝑥10

Program (3 input variables)

𝑥4 == 𝑥1 ⊕ 𝑥2

∧ 𝑥5 == 𝑥2 ⊕ 𝑥3

∧ 𝑥6 == 𝑥4 ∧ 𝑥2

∧ 𝑥7 == 𝑥4 ∧ 𝑥5

∧ 𝑥8 == 𝑥2 ∧ 𝑥5

∧ 𝑥9 == 𝑥6 ∨ 𝑥7

∧ 𝑥10 == 𝑥9 ∨ 𝑥8

∧ 𝑥10

Formula (10 input variables)

𝑥4 == 𝑥1 ⊕ 𝑥2

∧ 𝑥5 == 𝑥2 ⊕ 𝑥3

∧ 𝑥6 == 𝑥4 ∧ 𝑥2

∧ 𝑥7 == 𝑥4 ∧ 𝑥5

∧ 𝑥8 == 𝑥2 ∧ 𝑥5

∧ 𝑥9 == 𝑥6 ∨ 𝑥7

∧ 𝑥10 == 𝑥9 ∨ 𝑥8

∧ 𝑥10

Formula (10 input variables)

Step 3: Formula ⇒ 3-CNF Formula

13

ҧ𝑥4 ∨ 𝑥1 ∨ 𝑥2 ∧ 𝑥4 ∨ 𝑥1 ∨ ҧ𝑥2 ∧ 𝑥4 ∨ ҧ𝑥1 ∨ 𝑥2 ∧ ҧ𝑥4 ∨ ҧ𝑥1 ∨ ҧ𝑥2

∧ ҧ𝑥5 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥5 ∨ 𝑥2 ∨ ҧ𝑥3 ∧ 𝑥5 ∨ ҧ𝑥2 ∨ 𝑥3 ∧ ҧ𝑥5 ∨ ҧ𝑥2 ∨ ҧ𝑥3

∧ ҧ𝑥6 ∨ 𝑥4 ∧ ҧ𝑥6 ∨ 𝑥2 ∧ ҧ𝑥4 ∨ ҧ𝑥2 ∨ 𝑥6

∧ ҧ𝑥7 ∨ 𝑥4 ∧ ҧ𝑥7 ∨ 𝑥5 ∧ ҧ𝑥4 ∨ ҧ𝑥5 ∨ 𝑥7

∧ ҧ𝑥8 ∨ 𝑥2 ∧ ҧ𝑥8 ∨ 𝑥5 ∧ ҧ𝑥2 ∨ ҧ𝑥5 ∨ 𝑥8

∧ ҧ𝑥9 ∨ 𝑥6 ∨ 𝑥7 ∧ 𝑥9 ∨ ҧ𝑥6 ∧ 𝑥9 ∨ ҧ𝑥7

∧ ҧ𝑥10 ∨ 𝑥9 ∨ 𝑥8 ∧ 𝑥10 ∨ ҧ𝑥9 ∧ 𝑥10 ∨ ҧ𝑥8

∧ 𝑥10

3-CNF Formula (10 input variables)

Every Boolean
function has a CNF

representation!

Let 𝐶 be the initial circuit and let 𝜙 be the final 3-CNF formula.
Which of the following is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: The number of clauses in 𝜙 is
Θ size of 𝐶

A: 𝐶 is satisfiable if and only if 𝜙
is satisfiable

B: 𝜙 ≤ poly 𝐶

D: 𝐶 and 𝜙 compute the same
Boolean function

Reduction correctness

• Let the gates of 𝐶 be 𝑔1, … , 𝑔𝑚 (topological order)

• Claim: 𝐶 is satisfiable if and only if 𝜙 is satisfiable

• Proof: ⇒ Suppose 𝐶 𝑥1, … , 𝑥𝑛 = 1

• Let 𝑥𝑛+𝑖 = 𝑔𝑖 𝑥1, … , 𝑥𝑛

• Then 𝜙 𝑥1, … , 𝑥𝑛+𝑚 = 1

14

Reduction correctness

• Let the gates of 𝐶 be 𝑔1, … , 𝑔𝑚 (topological order)

• Claim: 𝐶 is satisfiable if and only if 𝜙 is satisfiable

• Proof: ⇐ Suppose 𝜙 𝑥1, … , 𝑥𝑛+𝑚 = 1

• Then 𝑥𝑛+𝑖 = 𝑔𝑖 𝑥1, … , 𝑥𝑛 for every 𝑖 by induction

• Furthermore, 𝑥𝑛+𝑚 = 1

• Therefore, 𝐶 𝑥1, … , 𝑥𝑛 = 1

15

16

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

3-SAT

Chaining reductions together

• 3-SAT is the starting point for many NP-hardness

proofs

• We are finally ready to prove that CLIQUE is NP-complete

17

CLIQUE is NP-complete

• Recall CLIQUE = 𝐺, 𝑘 ∶ 𝐺 contains a 𝑘-clique

• Proof: We showed CLIQUE ∈ NP in a previous class

• To prove that CLIQUE is NP-hard, we will do a reduction from 3-SAT

18

Theorem: CLIQUE is NP-complete

Proof that 3-SAT ≤P CLIQUE

• Let 𝜙 be a 3-CNF formula (an instance of 3-SAT)

• Reduction: Ψ 𝜙 = 𝐺, 𝑘

• 𝑘 is the number of clauses in 𝜙

• 𝐺 is a graph on ≤ 3𝑘 vertices defined as follows

19

Reduction from 3-SAT to CLIQUE

• E.g., 𝜙 = 𝑥1 ∨ 𝑥2 ∨ ҧ𝑥5 ∧ ҧ𝑥1 ∨ 𝑥4 ∨ 𝑥6

∧ 𝑥2 ∨ 𝑥4 ∨ ҧ𝑥3 ∧ 𝑥3 ∨ ҧ𝑥6 ∨ 𝑥1

20

ҧ𝑥1

𝑥4

𝑥6

𝑥1 𝑥2 ҧ𝑥5

𝑥2

𝑥4

ҧ𝑥3

𝑥3 ҧ𝑥6 𝑥1

• For each clause ℓ1 ∨ ℓ2 ∨ ℓ3 , create a

“group” of three vertices labeled

ℓ1, ℓ2, ℓ3

• (If the clause only has one or two literals,

then only use one or two vertices)

• Put an edge {𝑢, 𝑣} if 𝑢 and 𝑣 are in

different groups and 𝑢 and 𝑣 do not

have contradictory labels (𝑥𝑖 and ҧ𝑥𝑖)

YES maps to YES

• Suppose there exists 𝑥 such that 𝜙 𝑥 = 1

• In each clause, at least one literal is satisfied by 𝑥

• Therefore, in each group, at least one vertex is “satisfied by 𝑥,” i.e., it

is labeled by a literal that is satisfied by 𝑥

• Let 𝑆 be a set consisting of one satisfied vertex from each group

• Then 𝑆 is a 𝑘-clique (vertices in 𝑆 cannot have contradictory labels)

21

ҧ𝑥1

𝑥4

𝑥6

𝑥1 𝑥2 ҧ𝑥5

𝑥2

𝑥4

ҧ𝑥3

𝑥3 ҧ𝑥6 𝑥1

NO maps to NO

• Suppose 𝐺 has a 𝑘-clique 𝑆

• Let 𝑥 be an assignment that satisfies each vertex in 𝑆

• This exists because no two vertices in 𝑆 have contradictory labels

• 𝑆 cannot contain two vertices from a single group, and 𝑆 = 𝑘, so 𝑆 must

contain one vertex from each group

• Therefore, 𝑥 satisfies at least one literal in each clause, so 𝜙 𝑥 = 1

22

ҧ𝑥1

𝑥4

𝑥6

𝑥1 𝑥2 ҧ𝑥5

𝑥2

𝑥4

ҧ𝑥3

𝑥3 ҧ𝑥6 𝑥1

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: NP-hardness
	Slide 3: NP-completeness
	Slide 4: NP-completeness
	Slide 5: What else is NP-complete?
	Slide 6: Chaining reductions together
	Slide 7: Chaining reductions together
	Slide 8: Roadmap
	Slide 9: k-CNF formulas
	Slide 10: The Cook-Levin Theorem
	Slide 11: Step 1: Circuit implies Program
	Slide 12: Step 2: Program implies Formula
	Slide 13: Step 3: Formula implies 3-CNF Formula
	Slide 14: Reduction correctness
	Slide 15: Reduction correctness
	Slide 16
	Slide 17: Chaining reductions together
	Slide 18: CLIQUE is NP-complete
	Slide 19: Proof that 3‑SAT less than or equal to sub P , CLIQUE
	Slide 20: Reduction from 3‑SAT to CLIQUE
	Slide 21: YES maps to YES
	Slide 22: NO maps to NO

