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The complexity class NP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time Turing 

machine 𝑀 such that 𝑤 ∈ 𝑌 ⇔ Pr 𝑀 accepts 𝑤 ≠ 0

• Fact: 𝑌 ∈ NP if and only if there exists a polynomial-time verifier for 𝑌
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The P vs. NP problem

• P ⊆ NP (why?)

• Open question: Does P = NP?

• The Clay Mathematics Institute will give you $1 million

if you prove P = NP or if you prove P ≠ NP

• Let 𝑌 ∈ NP. What can we do if we want to decide 𝑌 deterministically?
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Solving problems in NP by brute force

• Claim: NP ⊆ PSPACE

• Proof: Let 𝑀 be a time-𝑛𝑘 nondeterministic TM. Given 𝑤 ∈ 0, 1 𝑛:

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
, simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

2. If we find some 𝑥 such that 𝑀 accepts, accept. Otherwise, reject

• NP can be informally defined as “the set of problems that can be solved by 

brute-force search”
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The P vs. NP problem

• “P = NP” would mean:

• Brute-force search algorithms can always be converted into poly-time algorithms

• Verifying someone else’s solution is never significantly easier than solving a problem 

from scratch

• This would be counterintuitive!
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Comparing NP and BPP

• Conjecture: P ≠ NP

• It’s hard to find a needle in a haystack

• Conjecture: P = BPP

• It’s easy to find hay in a haystack!
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Complexity of CLIQUE

• Recall: CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Previously discussed: CLIQUE ∈ NP

• Consequence: If P = NP, then CLIQUE ∈ P

• Plan: We will prove that if P ≠ NP, then CLIQUE ∉ P

• This will provide evidence that CLIQUE ∉ P

• To prove it, we will use concepts of NP-hardness and NP-completeness
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NP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-hard if, for every 𝐿 ∈ NP, we have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in NP

• Every problem in NP is basically a special case of 𝑌
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NP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-complete if 𝑌 is NP-hard and 𝑌 ∈ NP

• The NP-complete languages are the hardest languages in NP

• If 𝑌 is NP-complete, then the language 𝑌 can be said to “capture” / 

“express” the entire complexity class NP

• Example: We will eventually prove that CLIQUE is NP-complete
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NP-complete languages are probably not in P

• Let 𝑌 be an NP-complete language

• Claim: 𝑌 ∈ P if and only if P = NP

• Proof: 

• ⇐  This holds because 𝑌 ∈ NP 

• ⇒  This holds because 𝑌 is NP-hard 
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NP-completeness
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Proving NP-completeness

• We will prove that several interesting languages, including CLIQUE, 

are NP-complete

• This will provide evidence that these languages are intractable

• First example: The circuit satisfiability problem
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Circuit satisfiability

• Let 𝐶 be an 𝑛-input 1-output circuit

• We say that 𝐶 is satisfiable if there exists

𝑥 ∈ {0, 1}𝑛 such that 𝐶 𝑥 = 1
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Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = { 𝐶 ∶ 𝐶 is a satisfiable circuit}

• Proof: Next 6 slides
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Theorem: CIRCUIT-SAT is NP-complete.



Proof that CIRCUIT-SAT ∈ NP

• Given 𝐶 , where 𝐶 is an 𝑛-input 1-output circuit:

1. Pick 𝑥 ∈ 0, 1 𝑛 at random

2. Check whether 𝐶 𝑥 = 1   (recall CIRCUIT-VALUE ∈ P)

3. Accept if 𝐶 𝑥 = 1; reject if 𝐶 𝑥 = 0
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Code as data IV

• Let 𝑌 ∈ NP

• To prove that CIRCUIT-SAT is NP-hard, we 

need to prove 𝑌 ≤P CIRCUIT-SAT

• Given 𝑤 ∈ 0, 1 ∗, we will construct a 

circuit that is satisfiable if and only if 𝑤 ∈ 𝑌

• Idea: Build a “verification circuit”
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Constructing the verification circuit

• Let 𝑉 be a poly-time verifier for 𝑌 with certificates of length 𝑛𝑘

• Let 𝑤 ∈ 0, 1 𝑛

• 𝑤 ∈ 𝑌 if and only if there exists 𝑥 ∈ 0, 1 𝑛𝑘
 such that 𝑉 accepts 𝑤, 𝑥
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TM ⇒ Circuit

• Step 1: Construct a 

circuit 𝐶 that simulates 

the verifier 𝑉

• (Recall P ⊆ PSIZE 

proof)
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TM ⇒ Circuit

• Step 1: Construct a 

circuit 𝐶 that simulates 

the verifier 𝑉

• (Recall P ⊆ PSIZE 

proof)
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Step 2: Hard-coding

• Hard-code the original input 𝑤, so the input to 𝐶′ is 𝑥 (certificate)

• (Recall P/poly ⊆ PSIZE proof)

• Technical detail: Use the encoding 𝑤, 𝑥 = 1|𝑤|0𝑤𝑥

• Reduction: Ψ 𝑤 = 𝐶′
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• Poly-time computable 

• YES maps to YES: If 𝑤 ∈ 𝑌, 

then 𝐶′ is satisfiable 

• NO maps to NO: If 𝑤 ∉ 𝑌, 

then 𝐶′ is not satisfiable 



• Make sure you thoroughly understand this theorem and its proof!

• A ton of key concepts from this course come together here!
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Theorem: CIRCUIT-SAT is NP-complete.



NP-completeness
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What else is NP-complete?

• We showed that CIRCUIT-SAT is NP-complete

• This will help us to prove that other problems,

such as CLIQUE, are also NP-complete

• Idea: Chain reductions together
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Chaining reductions together

• Claim: If 𝑌1 ≤P 𝑌2 ≤P 𝑌3, then 𝑌1 ≤P 𝑌3

• Proof: Let Ψ1→2 and Ψ2→3 be the mapping reductions

• Reduction from 𝑌1 to 𝑌3 is Ψ 𝑤 = Ψ2→3 Ψ1→2 𝑤

• YES maps to YES 

• NO maps to NO 

• Poly-time computable, because Ψ1→2 𝑤 ≤ poly 𝑤
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Chaining reductions together
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