
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

The complexity class NP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time Turing

machine 𝑀 such that 𝑤 ∈ 𝑌 ⇔ Pr 𝑀 accepts 𝑤 ≠ 0

• Fact: 𝑌 ∈ NP if and only if there exists a polynomial-time verifier for 𝑌

2

The P vs. NP problem

• P ⊆ NP (why?)

• Open question: Does P = NP?

• The Clay Mathematics Institute will give you $1 million

if you prove P = NP or if you prove P ≠ NP

• Let 𝑌 ∈ NP. What can we do if we want to decide 𝑌 deterministically?

3

P

NP

Solving problems in NP by brute force

• Claim: NP ⊆ PSPACE

• Proof: Let 𝑀 be a time-𝑛𝑘 nondeterministic TM. Given 𝑤 ∈ 0, 1 𝑛:

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
, simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

2. If we find some 𝑥 such that 𝑀 accepts, accept. Otherwise, reject

• NP can be informally defined as “the set of problems that can be solved by

brute-force search”

4

5

P

PSPACE

EXP

NP

The P vs. NP problem

• “P = NP” would mean:

• Brute-force search algorithms can always be converted into poly-time algorithms

• Verifying someone else’s solution is never significantly easier than solving a problem

from scratch

• This would be counterintuitive!

6

Conjecture: P ≠ NP

P

NP

Comparing NP and BPP

• Conjecture: P ≠ NP

• It’s hard to find a needle in a haystack

• Conjecture: P = BPP

• It’s easy to find hay in a haystack!

7

Complexity of CLIQUE

• Recall: CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Previously discussed: CLIQUE ∈ NP

• Consequence: If P = NP, then CLIQUE ∈ P

• Plan: We will prove that if P ≠ NP, then CLIQUE ∉ P

• This will provide evidence that CLIQUE ∉ P

• To prove it, we will use concepts of NP-hardness and NP-completeness

8

NP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-hard if, for every 𝐿 ∈ NP, we have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in NP

• Every problem in NP is basically a special case of 𝑌

9

NP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is NP-complete if 𝑌 is NP-hard and 𝑌 ∈ NP

• The NP-complete languages are the hardest languages in NP

• If 𝑌 is NP-complete, then the language 𝑌 can be said to “capture” /

“express” the entire complexity class NP

• Example: We will eventually prove that CLIQUE is NP-complete

10

NP-complete languages are probably not in P

• Let 𝑌 be an NP-complete language

• Claim: 𝑌 ∈ P if and only if P = NP

• Proof:

• ⇐ This holds because 𝑌 ∈ NP

• ⇒ This holds because 𝑌 is NP-hard

11

NP-completeness

12

P

NP

NP-complete

NP-hard

Proving NP-completeness

• We will prove that several interesting languages, including CLIQUE,

are NP-complete

• This will provide evidence that these languages are intractable

• First example: The circuit satisfiability problem

13

Circuit satisfiability

• Let 𝐶 be an 𝑛-input 1-output circuit

• We say that 𝐶 is satisfiable if there exists

𝑥 ∈ {0, 1}𝑛 such that 𝐶 𝑥 = 1

14

∧

𝑥2

∨

∧

𝑥1

¬
Satisfiable

Unsatisfiable

∧

𝑥2

∨

∧

𝑥1

¬ ¬

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = { 𝐶 ∶ 𝐶 is a satisfiable circuit}

• Proof: Next 6 slides

15

Theorem: CIRCUIT-SAT is NP-complete.

Proof that CIRCUIT-SAT ∈ NP

• Given 𝐶 , where 𝐶 is an 𝑛-input 1-output circuit:

1. Pick 𝑥 ∈ 0, 1 𝑛 at random

2. Check whether 𝐶 𝑥 = 1 (recall CIRCUIT-VALUE ∈ P)

3. Accept if 𝐶 𝑥 = 1; reject if 𝐶 𝑥 = 0

16

Code as data IV

• Let 𝑌 ∈ NP

• To prove that CIRCUIT-SAT is NP-hard, we

need to prove 𝑌 ≤P CIRCUIT-SAT

• Given 𝑤 ∈ 0, 1 ∗, we will construct a

circuit that is satisfiable if and only if 𝑤 ∈ 𝑌

• Idea: Build a “verification circuit”

17

“Drawing Hands.”
(1948 lithograph by M. C. Escher)

Constructing the verification circuit

• Let 𝑉 be a poly-time verifier for 𝑌 with certificates of length 𝑛𝑘

• Let 𝑤 ∈ 0, 1 𝑛

• 𝑤 ∈ 𝑌 if and only if there exists 𝑥 ∈ 0, 1 𝑛𝑘
 such that 𝑉 accepts 𝑤, 𝑥

18

TM ⇒ Circuit

• Step 1: Construct a

circuit 𝐶 that simulates

the verifier 𝑉

• (Recall P ⊆ PSIZE

proof)

19

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

1 if 𝑉 accepts ⟨𝑤, 𝑥⟩
0 if 𝑉 rejects 𝑤, 𝑥

⊔ ⊔ ⊔⊔ ⊔ 𝑞0 ⊔⊔ ⊔

𝑤, 𝑥

0 0 0 0 0 0

TM ⇒ Circuit

• Step 1: Construct a

circuit 𝐶 that simulates

the verifier 𝑉

• (Recall P ⊆ PSIZE

proof)

20

𝑤, 𝑥

𝐶

Step 2: Hard-coding

• Hard-code the original input 𝑤, so the input to 𝐶′ is 𝑥 (certificate)

• (Recall P/poly ⊆ PSIZE proof)

• Technical detail: Use the encoding 𝑤, 𝑥 = 1|𝑤|0𝑤𝑥

• Reduction: Ψ 𝑤 = 𝐶′

21

𝑤, 𝑥

𝐶 𝐶′

1 1 1 0 𝑥1 𝑥2 𝑥3

𝑤

𝑥41 10

• Poly-time computable

• YES maps to YES: If 𝑤 ∈ 𝑌,

then 𝐶′ is satisfiable

• NO maps to NO: If 𝑤 ∉ 𝑌,

then 𝐶′ is not satisfiable

• Make sure you thoroughly understand this theorem and its proof!

• A ton of key concepts from this course come together here!

22

Theorem: CIRCUIT-SAT is NP-complete.

NP-completeness

23

P

NP

NP-complete

NP-hard

CIRCUIT-SAT

What else is NP-complete?

• We showed that CIRCUIT-SAT is NP-complete

• This will help us to prove that other problems,

such as CLIQUE, are also NP-complete

• Idea: Chain reductions together

24

Chaining reductions together

• Claim: If 𝑌1 ≤P 𝑌2 ≤P 𝑌3, then 𝑌1 ≤P 𝑌3

• Proof: Let Ψ1→2 and Ψ2→3 be the mapping reductions

• Reduction from 𝑌1 to 𝑌3 is Ψ 𝑤 = Ψ2→3 Ψ1→2 𝑤

• YES maps to YES

• NO maps to NO

• Poly-time computable, because Ψ1→2 𝑤 ≤ poly 𝑤

25

Chaining reductions together

26

0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ1→2

Ψ1→2

0, 1 ∗

𝑌3

Ψ2→3

Ψ2→3

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: The complexity class NP
	Slide 3: The P vs. NP problem
	Slide 4: Solving problems in NP by brute force
	Slide 5
	Slide 6: The P vs. NP problem
	Slide 7: Comparing NP and BPP
	Slide 8: Complexity of CLIQUE
	Slide 9: NP-hardness
	Slide 10: NP-completeness
	Slide 11: NP-complete languages are probably not in P
	Slide 12: NP-completeness
	Slide 13: Proving NP-completeness
	Slide 14: Circuit satisfiability
	Slide 15: Circuit satisfiability is NP-complete
	Slide 16: Proof that CIRCUIT‑SAT element of NP
	Slide 17: Code as data IV
	Slide 18: Constructing the verification circuit
	Slide 19: TM implies Circuit
	Slide 20: TM implies Circuit
	Slide 21: Step 2: Hard-coding
	Slide 22
	Slide 23: NP-completeness
	Slide 24: What else is NP-complete?
	Slide 25: Chaining reductions together
	Slide 26: Chaining reductions together

