CMSC 28100

Introduction to Complexity Theory

Autumn 2025

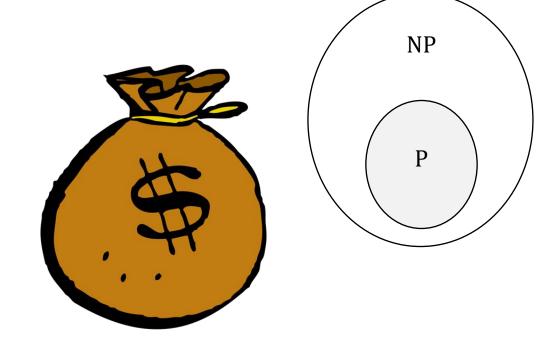
Instructor: William Hoza

The complexity class NP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in \mathbb{NP}$ if there exists a randomized polynomial-time Turing machine M such that $w \in Y \Leftrightarrow \Pr[M \text{ accepts } w] \neq 0$
- Fact: $Y \in NP$ if and only if there exists a polynomial-time verifier for Y

The P vs. NP problem

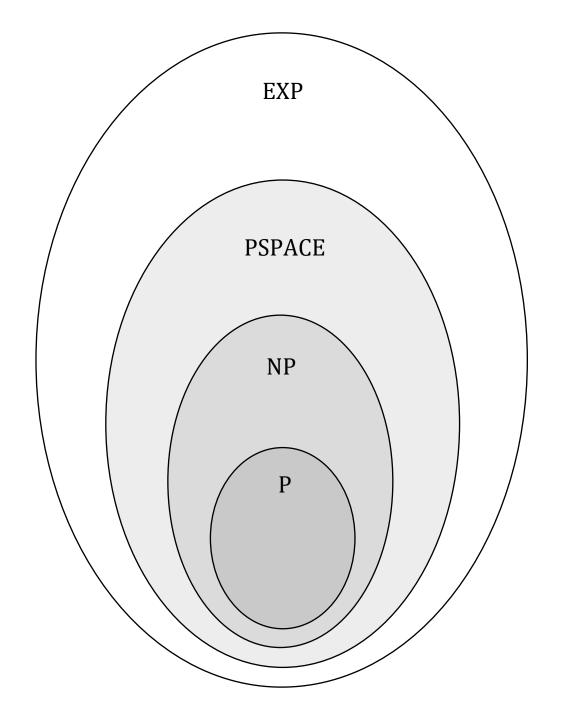
- $P \subseteq NP$ (why?)
- Open question: Does P = NP?



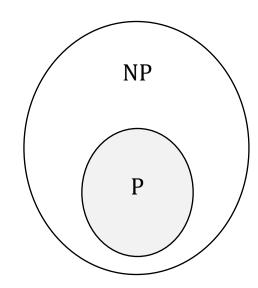
- The Clay Mathematics Institute will give you \$1 million if you prove P = NP or if you prove $P \neq NP$
- Let $Y \in NP$. What can we do if we want to decide Y deterministically?

Solving problems in NP by brute force

- Claim: NP ⊆ PSPACE
- **Proof:** Let M be a time- n^k nondeterministic TM. Given $w \in \{0, 1\}^n$:
 - 1. For every $x \in \{0,1\}^{n^k}$, simulate M, initialized with w on tape 1 and x on tape 2
 - 2. If we find some x such that M accepts, accept. Otherwise, reject
- NP can be informally defined as "the set of problems that can be solved by brute-force search"



The P vs. NP problem



- "P = NP" would mean:
 - Brute-force search algorithms can always be converted into poly-time algorithms
 - Verifying someone else's solution is never significantly easier than solving a problem from scratch
- This would be counterintuitive!

Conjecture: $P \neq NP$

Comparing NP and BPP

- Conjecture: $P \neq NP$
 - It's hard to find a needle in a haystack
- Conjecture: P = BPP
 - It's easy to find hay in a haystack!

Complexity of CLIQUE

- Recall: CLIQUE = $\{\langle G, k \rangle : G \text{ has a } k\text{-clique}\}$
- Previously discussed: CLIQUE ∈ NP
- Consequence: If P = NP, then $CLIQUE \in P$
- Plan: We will prove that if $P \neq NP$, then CLIQUE $\notin P$
 - This will provide evidence that CLIQUE ∉ P
- To prove it, we will use concepts of NP-hardness and NP-completeness

NP-hardness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** Y is NP-hard if, for every $L \in NP$, we have $L \leq_P Y$
- Interpretation:
 - Y is at least as hard as any language in NP
 - Every problem in NP is basically a special case of Y

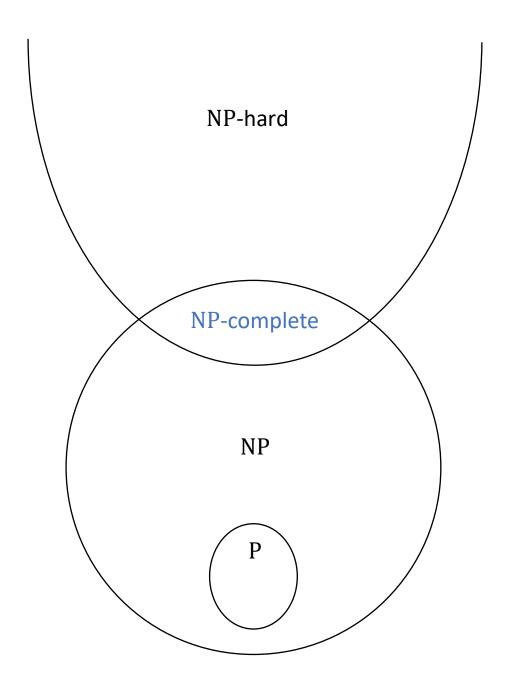
NP-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** Y is NP-complete if Y is NP-hard and $Y \in NP$
- The NP-complete languages are the hardest languages in NP
- If Y is NP-complete, then the language Y can be said to "capture" / "express" the entire complexity class NP
- Example: We will eventually prove that CLIQUE is NP-complete

NP-complete languages are probably not in P

- Let Y be an NP-complete language
- Claim: $Y \in P$ if and only if P = NP
- Proof:
 - (\Leftarrow) This holds because $Y \in NP \checkmark$
 - (\Rightarrow) This holds because Y is NP-hard \checkmark

NP-completeness

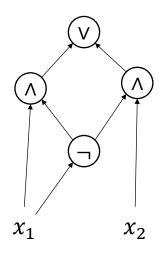


Proving NP-completeness

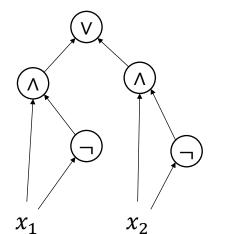
- We will prove that several interesting languages, including CLIQUE, are NP-complete
- This will provide evidence that these languages are intractable
- First example: The circuit satisfiability problem

Circuit satisfiability

- Let ${\it C}$ be an n-input 1-output circuit
- We say that C is satisfiable if there exists $x \in \{0, 1\}^n$ such that C(x) = 1



Satisfiable 🗸



Unsatisfiable X

Circuit satisfiability is NP-complete

• Let CIRCUIT-SAT = $\{\langle C \rangle : C \text{ is a satisfiable circuit}\}$

Theorem: CIRCUIT-SAT is NP-complete.

Proof: Next 6 slides

Proof that CIRCUIT-SAT ∈ NP

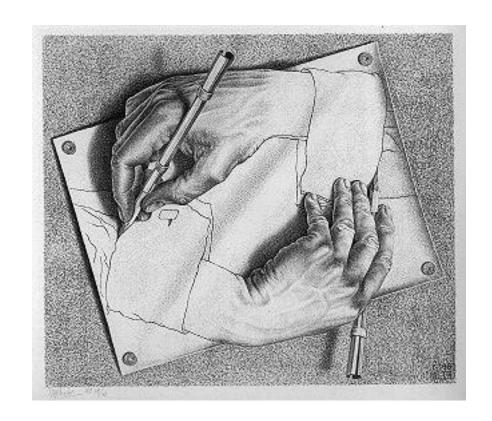
- Given $\langle C \rangle$, where C is an n-input 1-output circuit:
 - 1. Pick $x \in \{0, 1\}^n$ at random
 - 2. Check whether C(x) = 1

(recall CIRCUIT-VALUE \in P)

3. Accept if C(x) = 1; reject if C(x) = 0

Code as data IV

- Let $Y \in NP$
- To prove that CIRCUIT-SAT is NP-hard, we need to prove $Y \leq_{\mathbb{P}} \mathsf{CIRCUIT}\mathsf{-SAT}$
- Given $w \in \{0,1\}^*$, we will construct a circuit that is satisfiable if and only if $w \in Y$
- Idea: Build a "verification circuit"



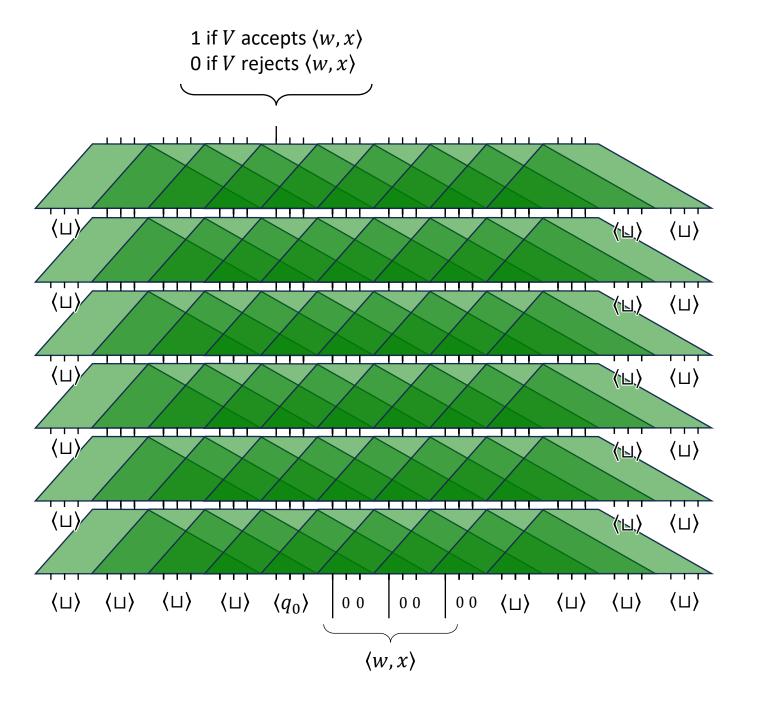
"Drawing Hands."
(1948 lithograph by M. C. Escher)

Constructing the verification circuit

- Let V be a poly-time verifier for Y with certificates of length n^k
- Let $w \in \{0, 1\}^n$
- $w \in Y$ if and only if there exists $x \in \{0,1\}^{n^k}$ such that V accepts $\langle w, x \rangle$

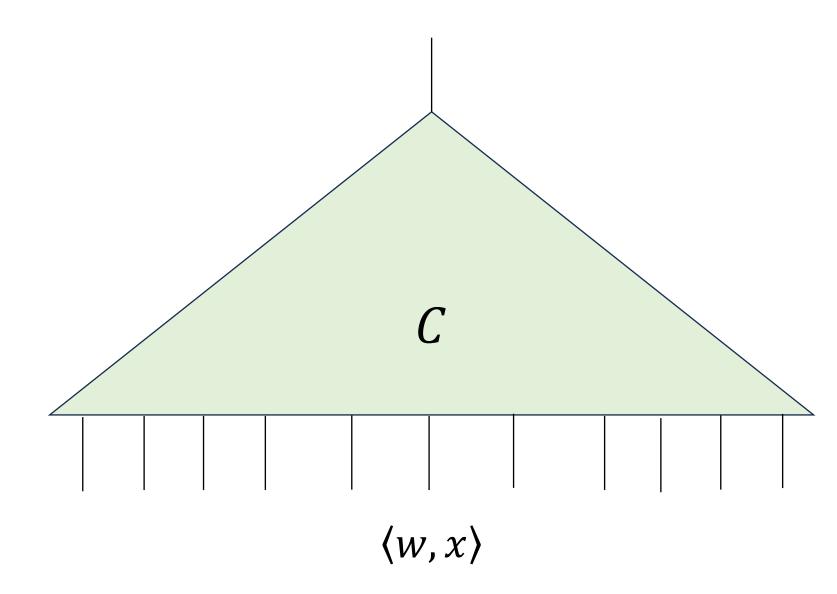
$TM \Rightarrow Circuit$

- Step 1: Construct a
 circuit C that simulates
 the verifier V
- (Recall $P \subseteq PSIZE$ proof)

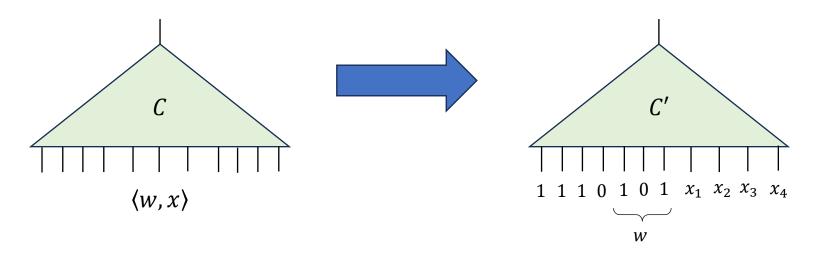


$TM \Rightarrow Circuit$

- Step 1: Construct a
 circuit C that simulates
 the verifier V
- (Recall $P \subseteq PSIZE$ proof)



Step 2: Hard-coding

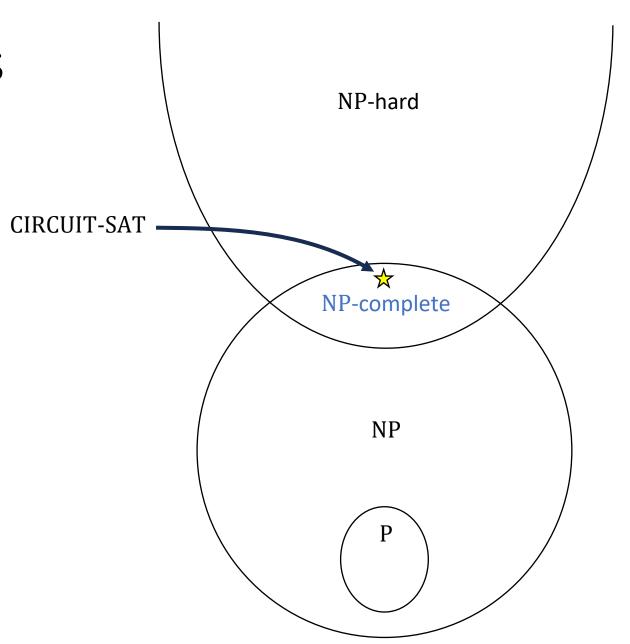


- Poly-time computable
- YES maps to YES: If $w \in Y$, then C' is satisfiable \checkmark
- NO maps to NO: If $w \notin Y$, then C' is not satisfiable \checkmark
- Hard-code the original input w, so the input to C' is x (certificate)
 - (Recall P/poly \subseteq PSIZE proof)
 - Technical detail: Use the encoding $\langle w, x \rangle = 1^{|w|} 0wx$
- Reduction: $\Psi(w) = \langle C' \rangle$

Theorem: CIRCUIT-SAT is NP-complete.

- Make sure you thoroughly understand this theorem and its proof!
- A ton of key concepts from this course come together here!

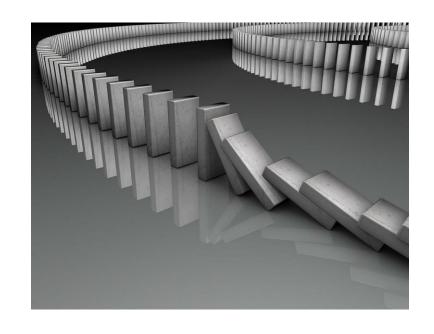
NP-completeness



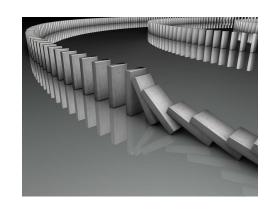
What else is NP-complete?

- We showed that CIRCUIT-SAT is NP-complete
- This will help us to prove that other problems,
 such as CLIQUE, are also NP-complete

• Idea: Chain reductions together



Chaining reductions together



- Claim: If $Y_1 \leq_P Y_2 \leq_P Y_3$, then $Y_1 \leq_P Y_3$
- **Proof:** Let $\Psi_{1\rightarrow 2}$ and $\Psi_{2\rightarrow 3}$ be the mapping reductions
- Reduction from Y_1 to Y_3 is $\Psi(w) = \Psi_{2\to 3}(\Psi_{1\to 2}(w))$
 - YES maps to YES
 - NO maps to NO
 - Poly-time computable, because $|\Psi_{1\to 2}(w)| \leq \text{poly}(|w|)$

Chaining reductions together

