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The complexity class NP

e letY € {0,1}

* Definition: Y € NP if there exists a randomized polynomial-time Turing

machine M such that w € Y & Pr[M accepts w] # 0

* Fact: Y € NP if and only if there exists a polynomial-time verifier for Y



NP

The P vs. NP problem

e P € NP (why?)

* Open question: Does P = NP?

* The Clay Mathematics Institute will give you S1 million

if you prove P = NP or if you prove P # NP

* Let Y € NP. What can we do if we want to decide Y deterministically?



Solving problems in NP by brute force

* Claim: NP € PSPACE

* Proof: Let M be a time-n’ nondeterministic TM. Given w € {0, 1}™*:

1. Forevery x € {0, 1}"k, simulate M, initialized with w on tape 1 and x on tape 2

2. If we find some x such that M accepts, accept. Otherwise, reject

* NP can be informally defined as “the set of problems that can be solved by

brute-force search”
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NP

The P vs. NP problem

e “P = NP” would mean:

* Brute-force search algorithms can always be converted into poly-time algorithms

* Verifying someone else’s solution is never significantly easier than solving a problem

from scratch

 This would be counterintuitive!

Conjecture: P # NP




Comparing NP and BPP

* Conjecture: P # NP

* It’s hard to find a needle in a haystack

* Conjecture: P = BPP

* |t’s easy to find hay in a haystack!




Complexity of CLIQUE

* Recall: CLIQUE = {{G, k) : G has a k-clique}
* Previously discussed: CLIQUE € NP
* Consequence: If P = NP, then CLIQUE € P

* Plan: We will prove that if P = NP, then CLIQUE & P

* This will provide evidence that CLIQUE & P

* To prove it, we will use concepts of NP-hardness and NP-completeness



NP-hardness

e letY € {0,1}"
* Definition: Y is NP-hard if, for every L € NP, we have L <p Y

* Interpretation:
* Y is at least as hard as any language in NP

* Every problem in NP is basically a special case of Y



NP-completeness

e letY € {0,1}"
* Definition: Y is NP-complete if Y is NP-hard and Y € NP
* The NP-complete languages are the hardest languages in NP

* If Y is NP-complete, then the language Y can be said to “capture” /

“express” the entire complexity class NP

* Example: We will eventually prove that CLIQUE is NP-complete
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NP-complete languages are probably not in P

* Let Y be an NP-complete language
e Claim:Y € Pifand only if P = NP

* Proof:

* (&) This holds because Y € NP «
* (=) This holds because Y is NP-hard «
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NP-completeness

NP-hard

NP-complete
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Proving NP-completeness

* We will prove that several interesting languages, including CLIQUE,

are NP-complete
* This will provide evidence that these languages are intractable

 First example: The circuit satisfiability problem

13



Circuit satisfiability

e Let C be an n-input 1-output circuit

 We say that C is satisfiable if there exists
x € {0,1}" suchthat C(x) =1

Satisfiable «

Unsatisfiable ¢
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Circuit satisfiability is NP-complete

* Let CIRCUIT-SAT = {(C) : C is a satisfiable circuit}

Theorem: CIRCUIT-SAT is NP-complete.

* Proof: Next 6 slides
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Proof that CIRCUIT-SAT € NP

(1)

* Given (C), where C is an n-input 1-output circuit:
1. Pickx € {0,1}" at random
2. Check whether C(x) =1 (recall CIRCUIT-VALUE € P)

3. Acceptif C(x) = 1;rejectif C(x) =0
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Code as data lV

*LetY € NP

* To prove that CIRCUIT-SAT is NP-hard, we
need to prove ¥ <p CIRCUIT-SAT

* Given w € {0, 1}*, we will construct a

circuit that is satisfiable ifand only if w € Y

* |dea: Build a “verification circuit”

“Drawing Hands.”
(1948 lithograph by M. C. Escher)
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Constructing the verification circuit

* Let V be a poly-time verifier for Y with certificates of length n*

e Letw € {0, 1}"

 w € Y if and only if there exists x € {0, 1}"k such that V accepts (w, x)
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TM = Circuit

* Step 1: Construct a
circuit C that simulates

the verifier V

* (Recall P € PSIZE
proof)
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TM = Circuit

* Step 1: Construct a
circuit C that simulates

the verifier V

* (Recall P € PSIZE
proof)
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Step 2: Hard-coding

e Poly-time computable
* YESmapstoYES:Ifw €Y,

; ‘ - then C’ is satisfiable «

TTT T T 1T 17T EEREEEEEEE * NOmapstoNO: Ifw &Y,
(w, x) 1110101 3 %% % then C' is not satisfiable «

w

* Hard-code the original input w, so the input to C' is x (certificate)

* (Recall P/poly < PSIZE proof)

e Technical detail: Use the encoding (w, x) = 1Wlowx

e Reduction: ¥(w) = (C")
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Theorem: CIRCUIT-SAT is NP-complete.

* Make sure you thoroughly understand this theorem and its proof!

* A ton of key concepts from this course come together here!
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NP-completeness

CIRCUIT-SAT

NP-hard

¥
NP-complete
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* We showed that CIRCUIT-SAT is NP-complete

* This will help us to prove that other problems,

such as CLIQUE, are also NP-complete

* Idea: Chain reductions together



Chaining reductions together

Claim: IfY; <p Y, <p Y3,thenY; <p 1j

* Proof: Let ¥, _,, and W,_,5 be the mapping reductions

 Reduction from Y; to Y; is W(w) = LIJZ_>3(L111_)2 (W))
* YES maps to YES «

* NO mapstoNO «

* Poly-time computable, because |W¥;_,(w)| < poly(|w|)
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Chaining reductions together

{0,1}° {0,1}°

{0,1}"
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