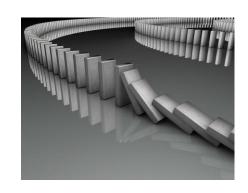
CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

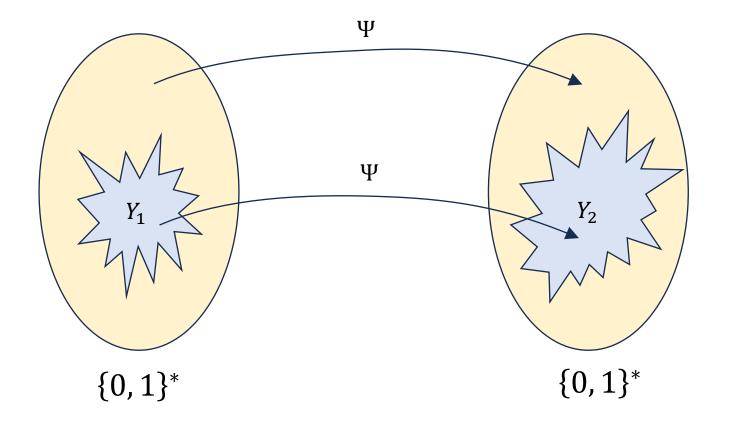
What about CLIQUE?



- CLIQUE = $\{\langle G, k \rangle : G \text{ has a } k\text{-clique}\}$
- It seems likely that CLIQUE ∉ P
- Can we prove it by doing a reduction from BOUNDED-HALT?
- Answer: Probably not!
- To understand why, we need to go beyond "in P or not in P"

Mapping reductions

• $Y_1 \leq_P Y_2$ means there is an efficient way to convert questions of the form "is $w \in Y_1$?" into questions of the form "is $w' \in Y_2$?"



EXP-hardness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** Y is "EXP-hard" if, for every $L \in EXP$, we have $L \leq_P Y$
- Interpretation:
 - Y is at least as hard as any language in EXP
 - Every problem in EXP is basically a special case of Y

Example: BOUNDED-HALT is EXP-hard

- BOUNDED-HALT = $\{\langle M, w, T \rangle : M \text{ halts on } w \text{ within } T \text{ steps} \}$
- Claim: BOUNDED-HALT is EXP-hard
- **Proof:** Let $Y \in EXP$. We will show $Y \leq_P BOUNDED$ -HALT
- There is a TM M that $\begin{cases} \text{accepts } w \text{ within } 2^{|w|^k} \text{ steps} & \text{if } w \in Y \\ \text{loops} & \text{if } w \notin Y \end{cases}$
- Mapping reduction: $\Psi(w) = \langle M, w, 2^{|w|^k} \rangle$

EXP-hard languages are intractable

- Let $Y \subseteq \{0, 1\}^*$
- Claim: If Y is EXP-hard, then $Y \notin P$
- **Proof:** There exists $L \in EXP$ such that $L \notin P$
- Since Y is EXP-hard, we have $L \leq_{P} Y$

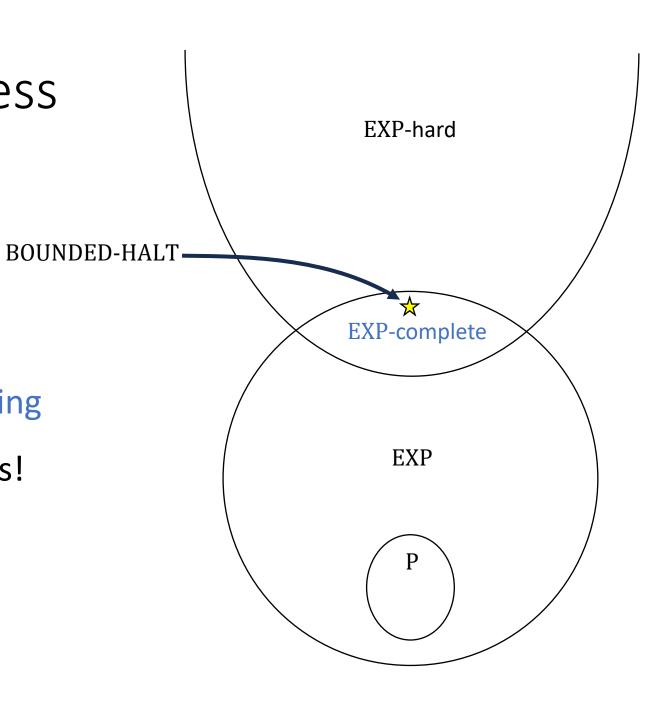
EXP-completeness

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** We say Y is EXP-complete if Y is EXP-hard and $Y \in EXP$
- The EXP-complete languages are the hardest languages in EXP
- If Y is EXP-complete, then the language Y can be said to "capture" / "express" the entire complexity class EXP

EXP-completeness

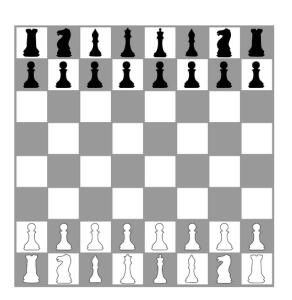
There are many interesting

EXP-complete languages!



Example: Chess

• Let GENERALIZED-CHESS = $\{\langle P \rangle : P \text{ is an} \}$ arrangement of chess pieces on an $N \times N$ board from which player 1 can force a win $\}$



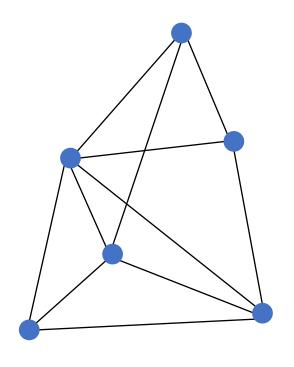
Theorem: GENERALIZED-CHESS is EXP-complete.

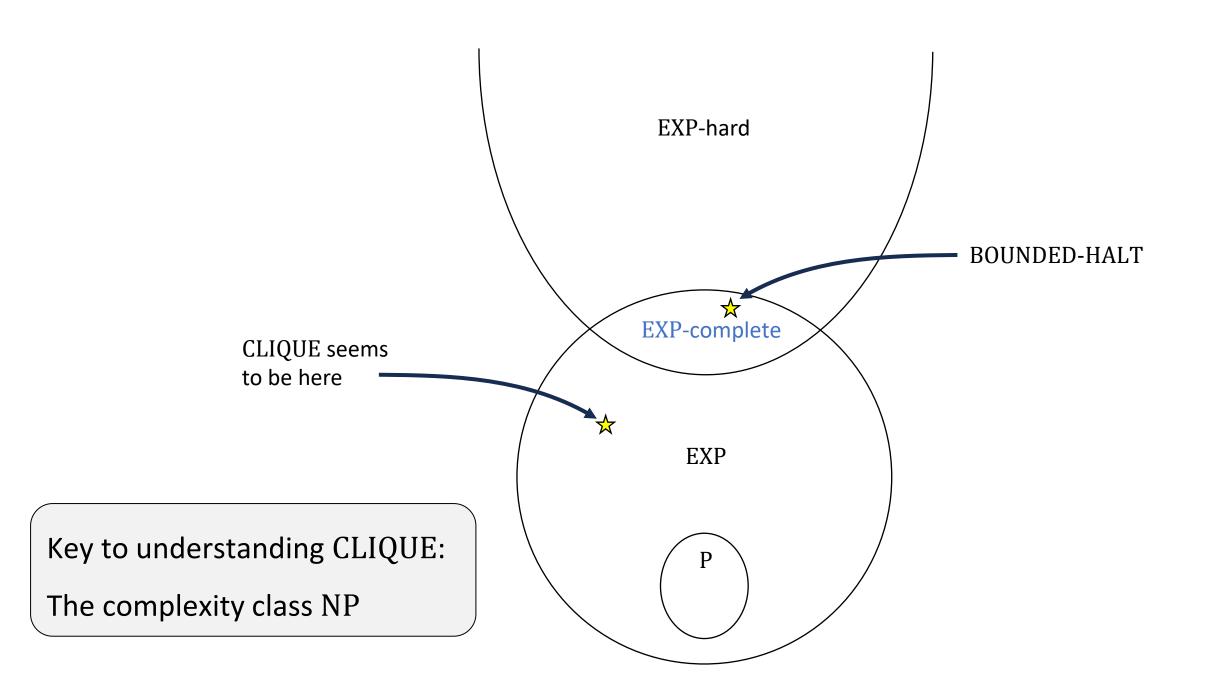
Consequently, GENERALIZED-CHESS ∉ P.

(Proof omitted. This theorem will not be on exercises/exams)

Why reductions don't always work

- We would like to prove CLIQUE ∉ P
- We could try proving BOUNDED-HALT \leq_P CLIQUE
- But that would imply that CLIQUE is EXP-hard
- In reality, CLIQUE is probably not EXP-hard!





The complexity class NP

- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** $Y \in \mathbb{NP}$ if there exists a randomized polynomial-time Turing machine M such that for every $w \in \{0, 1\}^*$:
 - If $w \in Y$, then $Pr[M \text{ accepts } w] \neq 0$
 - If $w \notin Y$, then Pr[M accepts w] = 0
- "Nondeterministic Polynomial-time"

"Nondeterministic Turing machine"

Another example of a language in NP

• FACTOR = $\{\langle K, M \rangle : K \text{ has a prime factor } p \leq M \}$

• Claim: FACTOR ∈ NP

Proof:

- 1. Pick $R \in \{2, 3, 4, ..., M\}$ uniformly at random
- 2. Check whether K/R is an integer (long division)
- 3. If it is, accept; if it isn't, reject

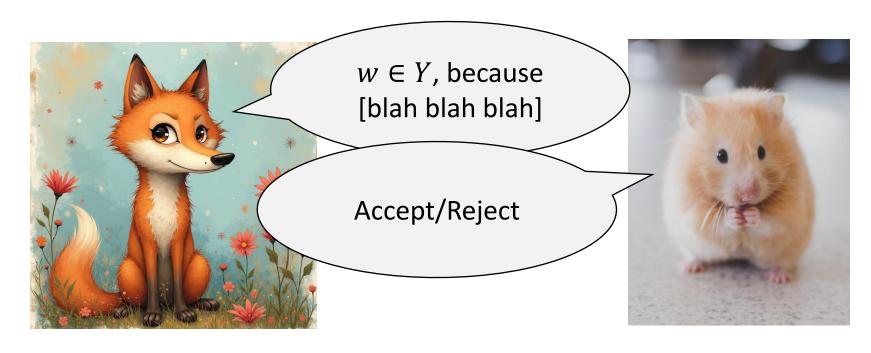
How to interpret NP

- NP is not intended to model the concept of tractability
- A nondeterministic polynomial-time algorithm is not a practical way to solve a problem
- Instead, NP is a conceptual tool for reasoning about computation

Another way of thinking about NP

- Two equivalent ways of defining NP:
- 1. One person, computing with a coin
 - (Randomized Turing machine model)
- 2. Two people: A prover and a verifier
 - (No randomness)

Prover and verifier



Prover (Computationally Unbounded)

Verifier (Polynomial Time)

Prover and verifier



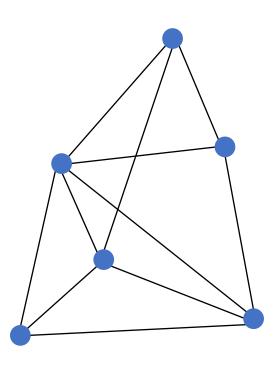
- Let $Y \subseteq \{0, 1\}^*$
- **Definition:** A polynomial-time verifier for Y is a polynomial-time deterministic Turing machine V such that for some constant $k \in \mathbb{N}$, we have:
 - For every $w \in Y$, there exists $x \in \{0,1\}^*$ such that $|x| \leq |w|^k$ and V accepts $\langle w, x \rangle$
 - "Completeness"
 - For every $w \notin Y$, for every $x \in \{0, 1\}^*$, V rejects $\langle w, x \rangle$
 - "Soundness"

"Proof" / "Certificate" / "Witness"

Example: CLIQUE

• Claim: There exists a polynomial-time verifier for CLIQUE

- Check whether x encodes a k-clique in G
- If yes, accept, if no, reject
- Polynomial time Completeness Soundness



Equivalence of the two definitions

- Let $Y \subseteq \{0, 1\}^*$
- Claim: $Y \in NP$ if and only if there exists a polynomial-time verifier for Y
- Proof:
 - (\Leftarrow) Randomly pick a certificate x, then run the verifier
 - (⇒) Verifier runs randomized TM with certificate in place of random bits
- Get comfortable with both ways of thinking about NP

Comparing NP and P/poly

Prover (NP)	Advisor (P/poly)
Computationally unbounded	Computationally unbounded
Knows entire input	Only knows length of input
Untrustworthy	Trustworthy

