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What about CLIQUE?

• CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• It seems likely that CLIQUE ∉ P

• Can we prove it by doing a reduction from BOUNDED-HALT?

• Answer: Probably not!

• To understand why, we need to go beyond “in P or not in P”
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Mapping reductions

• 𝑌1 ≤P 𝑌2 means there is an efficient way to convert questions of the 

form “is 𝑤 ∈ 𝑌1?” into questions of the form “is 𝑤′ ∈ 𝑌2?”
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EXP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is “EXP-hard” if, for every 𝐿 ∈ EXP, we have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in EXP

• Every problem in EXP is basically a special case of 𝑌
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Example: BOUNDED-HALT is EXP-hard

• BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Claim: BOUNDED-HALT is EXP-hard

• Proof: Let 𝑌 ∈ EXP. We will show 𝑌 ≤P BOUNDED-HALT

• There is a TM 𝑀 that ൝ accepts 𝑤 within 2 𝑤 𝑘
 steps if 𝑤 ∈ 𝑌

 loops if 𝑤 ∉ 𝑌
 

• Mapping reduction: Ψ 𝑤 = 𝑀, 𝑤, 2 𝑤 𝑘
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EXP-hard languages are intractable

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: If 𝑌 is EXP-hard, then 𝑌 ∉ P

• Proof: There exists 𝐿 ∈ EXP such that 𝐿 ∉ P

• Since 𝑌 is EXP-hard, we have 𝐿 ≤P 𝑌
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EXP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say 𝑌 is EXP-complete if 𝑌 is EXP-hard and 𝑌 ∈ EXP

• The EXP-complete languages are the hardest languages in EXP

• If 𝑌 is EXP-complete, then the language 𝑌 can be said to “capture” / 

“express” the entire complexity class EXP
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EXP-completeness
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Example: Chess

• Let GENERALIZED-CHESS = { 𝑃 ∶ 𝑃 is an 

arrangement of chess pieces on an 𝑁 × 𝑁 board 

from which player 1 can force a win} 

• (Proof omitted. This theorem will not be on exercises/exams)
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Theorem: GENERALIZED-CHESS is EXP-complete.

Consequently, GENERALIZED-CHESS ∉ P.



Why reductions don’t always work

• We would like to prove CLIQUE ∉ P

• We could try proving BOUNDED-HALT ≤P CLIQUE

• But that would imply that CLIQUE is EXP-hard

• In reality, CLIQUE is probably not EXP-hard!
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The complexity class NP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time 

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”
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“Nondeterministic 
Turing machine”



Another example of a language in NP

• FACTOR = 𝐾, 𝑀 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑀

• Claim: FACTOR ∈ NP

• Proof:

1. Pick 𝑅 ∈ 2, 3, 4, … , 𝑀  uniformly at random

2. Check whether 𝐾/𝑅 is an integer (long division)

3. If it is, accept; if it isn’t, reject
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How to interpret NP

• NP is not intended to model the concept of tractability

• A nondeterministic polynomial-time algorithm is not a practical way 

to solve a problem

• Instead, NP is a conceptual tool for reasoning about computation
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Another way of thinking about NP

• Two equivalent ways of defining NP:

1. One person, computing with a coin

• (Randomized Turing machine model)

2. Two people: A prover and a verifier

• (No randomness)
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Prover and verifier
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Prover and verifier

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: A polynomial-time verifier for 𝑌 is a polynomial-time deterministic 

Turing machine 𝑉 such that for some constant 𝑘 ∈ ℕ, we have:

• For every 𝑤 ∈ 𝑌, there exists 𝑥 ∈ 0, 1 ∗ such that 𝑥 ≤ 𝑤 𝑘 and 𝑉 accepts 𝑤, 𝑥

• “Completeness”

• For every 𝑤 ∉ 𝑌, for every 𝑥 ∈ 0, 1 ∗, 𝑉 rejects 𝑤, 𝑥

• “Soundness”
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“Proof” / “Certificate” / “Witness”



Example: CLIQUE

• Claim: There exists a polynomial-time verifier for CLIQUE

• Verifier: Given 𝐺, 𝑘, 𝑥 :

• Check whether 𝑥 encodes a 𝑘-clique in 𝐺

• If yes, accept, if no, reject

• Polynomial time  Completeness  Soundness 
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Equivalence of the two definitions

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: 𝑌 ∈ NP if and only if there exists a polynomial-time verifier for 𝑌

• Proof:

• (⇐) Randomly pick a certificate 𝑥, then run the verifier

• (⇒) Verifier runs randomized TM with certificate in place of random bits

• Get comfortable with both ways of thinking about NP
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Comparing NP and P/poly

Prover (NP) Advisor (P/poly)

Computationally 
unbounded

Computationally 
unbounded

Knows entire input
Only knows length 

of input 

Untrustworthy Trustworthy
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