CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

- .] i "’-' T Wik
I "uumm /HIM: ,’

<y o .
TV—' e Ul ’
Y‘Tﬁiﬁfﬁ;—,/ nmmH“”/I’

What about CLIQUE? Mg N

«

* CLIQUE = {({G, k) : G has a k-clique}

* It seems likely that CLIQUE & P

* Can we prove it by doing a reduction from BOUNDED-HALT?
* Answer: Probably not!

* To understand why, we need to go beyond “in P or not in P”

Mapping reductions

* Y, <p Y, means there is an efficient way to convert questions of the

form “isw € Y;?” into questions of the form “isw' € Y, ?”

v

0,1} 0,1}

EXP-hardness

e letY € {0,1}
* Definition: Y is “EXP-hard” if, for every L € EXP, we have L <p Y

* Interpretation:
* Y is at least as hard as any language in EXP

* Every problem in EXP is basically a special case of Y

Example: BOUNDED-HALT is EXP-hard

« BOUNDED-HALT = {{M,w, T) : M halts on w within T steps}
e Claim: BOUNDED-HALT is EXP-hard

* Proof: Let Y € EXP. We will show Y <p BOUNDED-HALT

(
s k .
accepts w within 2" steps ifw € Y

kloops ifwegyY

e Thereisa TM M that «

* Mapping reduction: ¥(w) = <M, w, 2|W|k>

EXP-hard languages are intractable

e letY € {0,1}
e Claim: If Y is EXP-hard, then Y ¢ P
* Proof: There exists L € EXP such that L € P

* Since Y is EXP-hard, we have L <p Y

EXP-completeness

e letY € {0,1}"
* Definition: We say Y is EXP-complete if Y is EXP-hard and Y € EXP
* The EXP-complete languages are the hardest languages in EXP

* If Y is EXP-complete, then the language Y can be said to “capture” /

“express” the entire complexity class EXP

EXP-completeness

EXP-hard

BOUNDED-HALT

¥
EXP-complete

There are many interesting

EXP-complete languages!

Example: Chess

- Let GENERALIZED-CHESS = {(P) : P is an

arrangement of chess piecesonan N X N board

from which player 1 can force a win}

Theorem: GENERALIZED-CHESS is EXP-complete.
Consequently, GENERALIZED-CHESS ¢& P.

 (Proof omitted. This theorem will not be on exercises/exams)

Why reductions don’t always work

 We would like to prove CLIQUE & P
* We could try proving BOUNDED-HALT <p CLIQUE
* But that would imply that CLIQUE is EXP-hard

* In reality, CLIQUE is probably not EXP-hard!

10

CLIQUE seems

to be here

-
Key to understanding CLIQUE:

KThe complexity class NP

~

EXP-hard

DA
EXP-complete

W

BOUNDED-HALT

11

The complexity class NP

e letY € {0,1}

* Definition: Y € NP if there exists a randomized polynomial-time
Turing machine M such that for every w € {0, 1}":
* Ifw €Y, then Pr[M accepts w] # 0

“Nondeterministic
* Ifw ¢ Y, then Pr[M acceptsw] =0 Turing machine”

* “Nondeterministic Polynomial-time”

12

Another example of a language in NP

 FACTOR = {(K, M) : K has a prime factor p < M}
* Claim: FACTOR € NP

* Proof:
1. PickR € {2,3,4,..., M} uniformly at random
2. Check whether K/R is an integer (long division)

3. Ifitis, accept; if itisn’t, reject

13

How to interpret NP

* NP is not intended to model the concept of tractability

* A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

* Instead, NP is a conceptual tool for reasoning about computation

14

Another way of thinking about NP

* Two equivalent ways of defining NP:

1. One person, computing with a coin

* (Randomized Turing machine model)

2. Two people: A prover and a verifier

* (No randomness)

15

Prover and verifier

w €Y, because
[blah blah blah]

Accept/Reject

Prover Verifier

(Computationally (Polynomial Time)
Unbounded)

16

Prover and verifier

e letY € {0,1}"

* Definition: A polynomial-time verifier for Y is a polynomial-time deterministic
Turing machine V such that for some constant k € N, we have:

e Forevery w €Y, there exists x € {0, 1}* such that |x| < |w|* and V accepts {(w, x)

* “Completeness” ‘k

* Foreveryw & Y, for every x € {0, 1}*, V rejects {(w, x) \

* “Soundness”
“Proof” / “Certificate” / “Witness”

17

Example: CLIQUE

* Claim: There exists a polynomial-time verifier for CLIQUE

* Verifier: Given (G, k, x):
e Check whether x encodes a k-clique in G

* |f yes, accept, if no, reject

* Polynomial time «” Completeness «” Soundness «

18

Equivalence of the two definitions

e letY € {0,1}"
 Claim: Y € NP if and only if there exists a polynomial-time verifier for Y

* Proof:

* (<) Randomly pick a certificate x, then run the verifier

* (=) Verifier runs randomized TM with certificate in place of random bits

* Get comfortable with both ways of thinking about NP

19

Comparing NP and P/poly

Prover (NP) Advisor (P /poly)

Computationally Computationally
unbounded unbounded

Only knows length
of input

Knows entire input

Untrustworthy Trustworthy

20

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: What about CLIQUE?
	Slide 3: Mapping reductions
	Slide 4: EXP-hardness
	Slide 5: Example: BOUNDED‑HALT is EXP-hard
	Slide 6: EXP-hard languages are intractable
	Slide 7: EXP-completeness
	Slide 8: EXP-completeness
	Slide 9: Example: Chess
	Slide 10: Why reductions don’t always work
	Slide 11
	Slide 12: The complexity class NP
	Slide 13: Another example of a language in NP
	Slide 14: How to interpret NP
	Slide 15: Another way of thinking about NP
	Slide 16: Prover and verifier
	Slide 17: Prover and verifier
	Slide 18: Example: CLIQUE
	Slide 19: Equivalence of the two definitions
	Slide 20: Comparing NP and Pퟀ� poly

