
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

What about CLIQUE?

• CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• It seems likely that CLIQUE ∉ P

• Can we prove it by doing a reduction from BOUNDED-HALT?

• Answer: Probably not!

• To understand why, we need to go beyond “in P or not in P”

2

Mapping reductions

• 𝑌1 ≤P 𝑌2 means there is an efficient way to convert questions of the

form “is 𝑤 ∈ 𝑌1?” into questions of the form “is 𝑤′ ∈ 𝑌2?”

3

0, 1 ∗ 0, 1 ∗

𝑌1 𝑌2

Ψ

Ψ

EXP-hardness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 is “EXP-hard” if, for every 𝐿 ∈ EXP, we have 𝐿 ≤P 𝑌

• Interpretation:

• 𝑌 is at least as hard as any language in EXP

• Every problem in EXP is basically a special case of 𝑌

4

Example: BOUNDED-HALT is EXP-hard

• BOUNDED-HALT = { 𝑀, 𝑤, 𝑇 ∶ 𝑀 halts on 𝑤 within 𝑇 steps}

• Claim: BOUNDED-HALT is EXP-hard

• Proof: Let 𝑌 ∈ EXP. We will show 𝑌 ≤P BOUNDED-HALT

• There is a TM 𝑀 that ൝ accepts 𝑤 within 2 𝑤 𝑘
 steps if 𝑤 ∈ 𝑌

 loops if 𝑤 ∉ 𝑌

• Mapping reduction: Ψ 𝑤 = 𝑀, 𝑤, 2 𝑤 𝑘

5

EXP-hard languages are intractable

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: If 𝑌 is EXP-hard, then 𝑌 ∉ P

• Proof: There exists 𝐿 ∈ EXP such that 𝐿 ∉ P

• Since 𝑌 is EXP-hard, we have 𝐿 ≤P 𝑌

6

EXP-completeness

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: We say 𝑌 is EXP-complete if 𝑌 is EXP-hard and 𝑌 ∈ EXP

• The EXP-complete languages are the hardest languages in EXP

• If 𝑌 is EXP-complete, then the language 𝑌 can be said to “capture” /

“express” the entire complexity class EXP

7

EXP-completeness

8

P

EXP

EXP-complete

EXP-hard

BOUNDED-HALT

There are many interesting

EXP-complete languages!

Example: Chess

• Let GENERALIZED-CHESS = { 𝑃 ∶ 𝑃 is an

arrangement of chess pieces on an 𝑁 × 𝑁 board

from which player 1 can force a win}

• (Proof omitted. This theorem will not be on exercises/exams)

9

Theorem: GENERALIZED-CHESS is EXP-complete.

Consequently, GENERALIZED-CHESS ∉ P.

Why reductions don’t always work

• We would like to prove CLIQUE ∉ P

• We could try proving BOUNDED-HALT ≤P CLIQUE

• But that would imply that CLIQUE is EXP-hard

• In reality, CLIQUE is probably not EXP-hard!

10

11

P

EXP

EXP-complete

EXP-hard

CLIQUE seems
to be here

BOUNDED-HALT

Key to understanding CLIQUE:

The complexity class NP

The complexity class NP

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”

12

“Nondeterministic
Turing machine”

Another example of a language in NP

• FACTOR = 𝐾, 𝑀 ∶ 𝐾 has a prime factor 𝑝 ≤ 𝑀

• Claim: FACTOR ∈ NP

• Proof:

1. Pick 𝑅 ∈ 2, 3, 4, … , 𝑀 uniformly at random

2. Check whether 𝐾/𝑅 is an integer (long division)

3. If it is, accept; if it isn’t, reject

13

How to interpret NP

• NP is not intended to model the concept of tractability

• A nondeterministic polynomial-time algorithm is not a practical way

to solve a problem

• Instead, NP is a conceptual tool for reasoning about computation

14

Another way of thinking about NP

• Two equivalent ways of defining NP:

1. One person, computing with a coin

• (Randomized Turing machine model)

2. Two people: A prover and a verifier

• (No randomness)

15

Prover and verifier

16

Prover
(Computationally

Unbounded)

Verifier
(Polynomial Time)

𝑤 ∈ 𝑌, because
[blah blah blah]

Accept/Reject

Prover and verifier

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: A polynomial-time verifier for 𝑌 is a polynomial-time deterministic

Turing machine 𝑉 such that for some constant 𝑘 ∈ ℕ, we have:

• For every 𝑤 ∈ 𝑌, there exists 𝑥 ∈ 0, 1 ∗ such that 𝑥 ≤ 𝑤 𝑘 and 𝑉 accepts 𝑤, 𝑥

• “Completeness”

• For every 𝑤 ∉ 𝑌, for every 𝑥 ∈ 0, 1 ∗, 𝑉 rejects 𝑤, 𝑥

• “Soundness”

17

“Proof” / “Certificate” / “Witness”

Example: CLIQUE

• Claim: There exists a polynomial-time verifier for CLIQUE

• Verifier: Given 𝐺, 𝑘, 𝑥 :

• Check whether 𝑥 encodes a 𝑘-clique in 𝐺

• If yes, accept, if no, reject

• Polynomial time Completeness Soundness

18

Equivalence of the two definitions

• Let 𝑌 ⊆ 0, 1 ∗

• Claim: 𝑌 ∈ NP if and only if there exists a polynomial-time verifier for 𝑌

• Proof:

• (⇐) Randomly pick a certificate 𝑥, then run the verifier

• (⇒) Verifier runs randomized TM with certificate in place of random bits

• Get comfortable with both ways of thinking about NP

19

Comparing NP and P/poly

Prover (NP) Advisor (P/poly)

Computationally
unbounded

Computationally
unbounded

Knows entire input
Only knows length

of input

Untrustworthy Trustworthy

20

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: What about CLIQUE?
	Slide 3: Mapping reductions
	Slide 4: EXP-hardness
	Slide 5: Example: BOUNDED‑HALT is EXP-hard
	Slide 6: EXP-hard languages are intractable
	Slide 7: EXP-completeness
	Slide 8: EXP-completeness
	Slide 9: Example: Chess
	Slide 10: Why reductions don’t always work
	Slide 11
	Slide 12: The complexity class NP
	Slide 13: Another example of a language in NP
	Slide 14: How to interpret NP
	Slide 15: Another way of thinking about NP
	Slide 16: Prover and verifier
	Slide 17: Prover and verifier
	Slide 18: Example: CLIQUE
	Slide 19: Equivalence of the two definitions
	Slide 20: Comparing NP and Pퟀ� poly

