CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Which problems can be solved through computation? CLASSICAL

Which languages are in P?

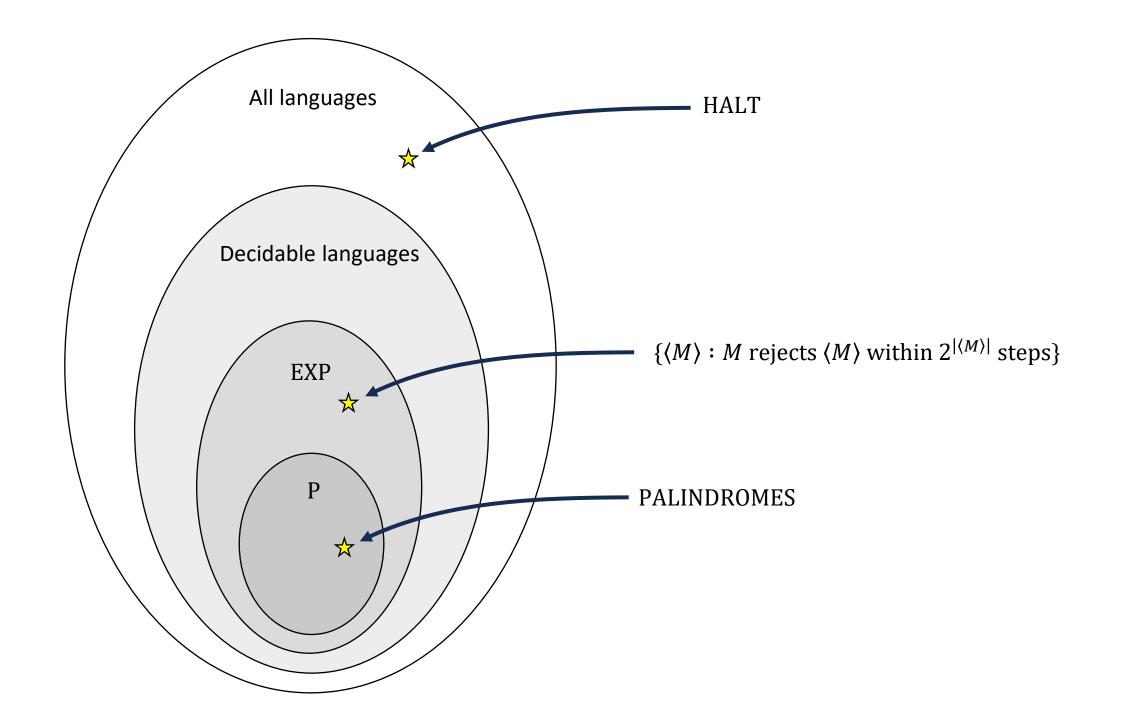
Which languages are not in P?

Intractability vs. undecidability

• Recall:

Theorem: There exists $Y \subseteq \{0, 1\}^*$ such that Y is decidable, but $Y \notin P$.

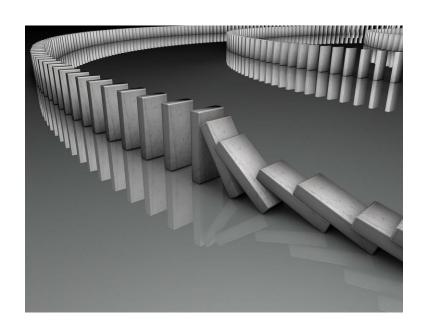
- Language: $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$
- Note: $Y \in EXP$, so the theorem shows $P \neq EXP$
 - Some exponential-time algorithms cannot be converted into poly-time algorithms



Contrived vs. natural

The language

 $\{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$



is rather contrived

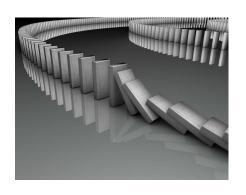
• Are there other examples of decidable languages outside P that are more interesting / natural / well-motivated?

The bounded halting problem

- Let BOUNDED-HALT = $\{\langle M, w, T \rangle : M \text{ halts on } w \text{ within } T \text{ steps} \}$
- Exercise: Can decide in time $O(|\langle M \rangle|^2 \cdot |w|^2 \cdot T^2)$
 - Pseudo-polynomial time
 - The input size is $n = |\langle M, w, T \rangle| \approx |\langle M \rangle| + |\langle w \rangle| + \log T$
- BOUNDED-HALT $\in \text{TIME}(n^4 \cdot 2^{2n}) \subseteq \text{EXP}$

Polynomial time?

The bounded halting problem



• BOUNDED-HALT = $\{\langle M, w, T \rangle : M \text{ halts on } w \text{ within } T \text{ steps} \}$

Theorem: BOUNDED-HALT ∉ P

• Proof strategy: We'll show that if BOUNDED-HALT were in P, then it would follow that P = EXP

Proof that BOUNDED-HALT ∉ P

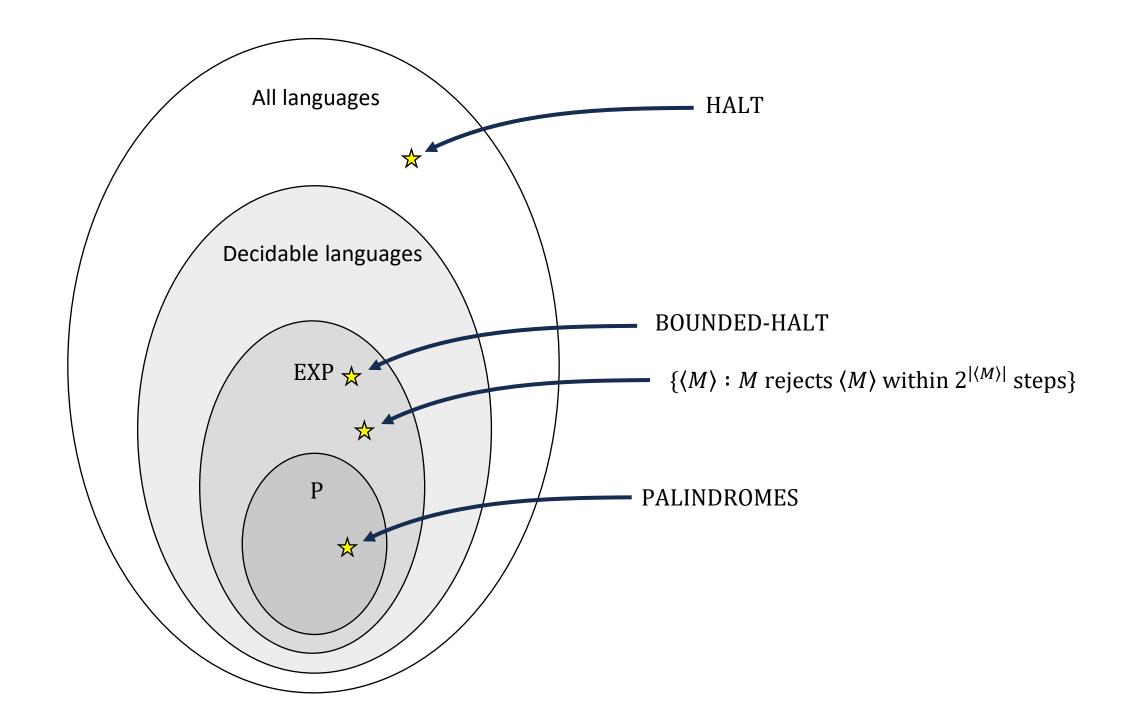
- Assume B is a poly-time TM deciding BOUNDED-HALT
- Let $Y \in \text{EXP}$. There is a TM M that $\begin{cases} \text{accepts } w \text{ within } 2^{|w|^k} \text{ steps} & \text{if } w \in Y \\ \text{loops} & \text{if } w \notin Y \end{cases}$
- We will construct a poly-time TM R that decides Y

 $R \stackrel{\int}{\prec}$

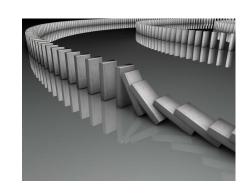
Given $w \in \{0, 1\}^*$:

- 1. Simulate B on $\langle M, w, 2^{|w|^k} \rangle$
- 2. If *B* accepts, accept. If *B* rejects, reject.

- Polynomial time
- If $w \in Y$, then M accepts w within $2^{|w|^k}$ steps, so R accepts w
- If $w \notin Y$, then M loops on w, so R rejects $w \checkmark$



What about CLIQUE?



- CLIQUE = $\{\langle G, k \rangle : G \text{ has a } k\text{-clique}\}$
- It seems likely that CLIQUE ∉ P
- Can we prove it by doing a reduction from BOUNDED-HALT?
- Answer: Probably not!
- To understand why, we need to go beyond "in P or not in P"

Beyond "it's not in P"

- We proved BOUNDED-HALT ∉ P
- Insight: The proof gives us bonus information
 - "How far outside P is it?"
 - "Why is it outside P? What kind of hardness does it have?"
- The proof shows that every language in EXP reduces to BOUNDED-HALT
- Furthermore, the reduction has a very specific structure

Mapping reductions

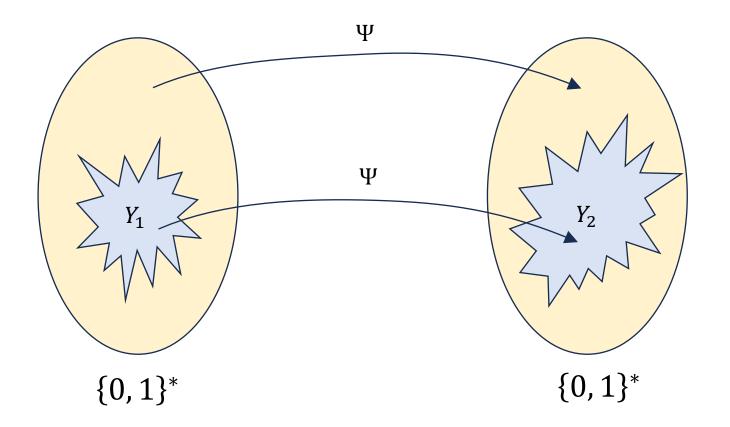
- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- **Definition:** We say Y_1 is poly-time mapping reducible to Y_2 if there exists

 $\Psi: \{0,1\}^* \to \{0,1\}^*$ and a poly-time TM M_{Ψ} such that for every $w \in \{0,1\}^*$:

- If $w \in Y_1$, then $\Psi(w) \in Y_2$ "YES maps to YES"
- If $w \notin Y_1$, then $\Psi(w) \notin Y_2$ "NO maps to NO"
- M_{Ψ} halts on w with $\Psi(w)$ written on its tape "Poly-time computable"
- Notation: $Y_1 \leq_P Y_2$
 - Intuition: "Complexity of Y_1 " \leq "Complexity of Y_2 "

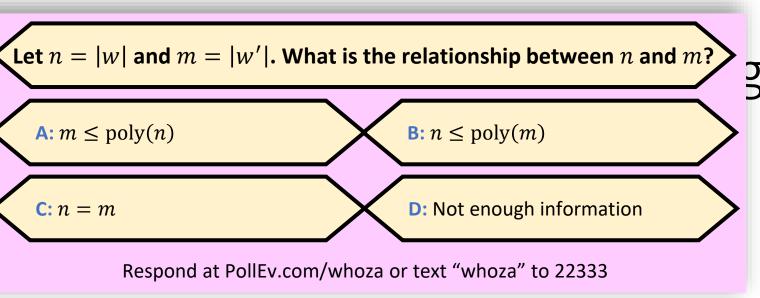
Mapping reductions

• $Y_1 \leq_P Y_2$ means there is an efficient way to convert questions of the form "is $w \in Y_1$?" into questions of the form "is $w' \in Y_2$?"



Mapping reduction example

- COMPOSITES = $\{\langle K \rangle : K \text{ is a composite number}\}$
- FACTOR = $\{\langle K, M \rangle : K \text{ has a prime factor } p \leq M \}$
- Claim: COMPOSITES \leq_P FACTOR
- **Proof:** $\Psi(\langle K \rangle) = \langle K, K 1 \rangle$. Poly-time computable \checkmark
- If K is composite, then K has a prime factor less than K
- If K is not composite, then K does not have a prime factor less than $K \checkmark$



guage is in P

- **Proof:** Given $w \in \{0, 1\}^*$:
 - 1. Compute $w' = \Psi(w)$

(this takes $O(n^{k_1})$ time)

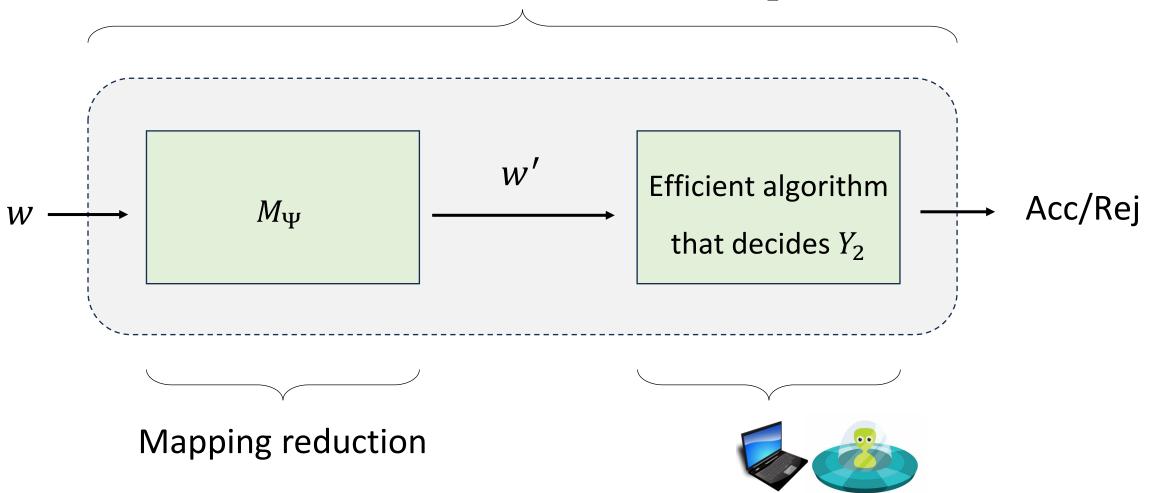
2. Check whether $w' \in Y_2$

(this takes $O(m^{k_2})$ time where m = |w'|)

- 3. If so, accept; otherwise, reject.
- $m \le O(n^{k_1})$, so the total time is $O(n^{k_1} + n^{k_1 \cdot k_2}) = \text{poly}(n)$

Reductions: Proving that a language is in P

Efficient algorithm that decides Y_1



Reductions: Proving that a language is not in P

- Let $Y_1, Y_2 \subseteq \{0, 1\}^*$
- Claim: If $Y_1 \leq_P Y_2$ and $Y_1 \notin P$, then $Y_2 \notin P$
- **Proof:** If Y_2 were in P, then Y_1 would also be in P