CMSC 28100

Introduction to Complexity Theory

Autumn 2025

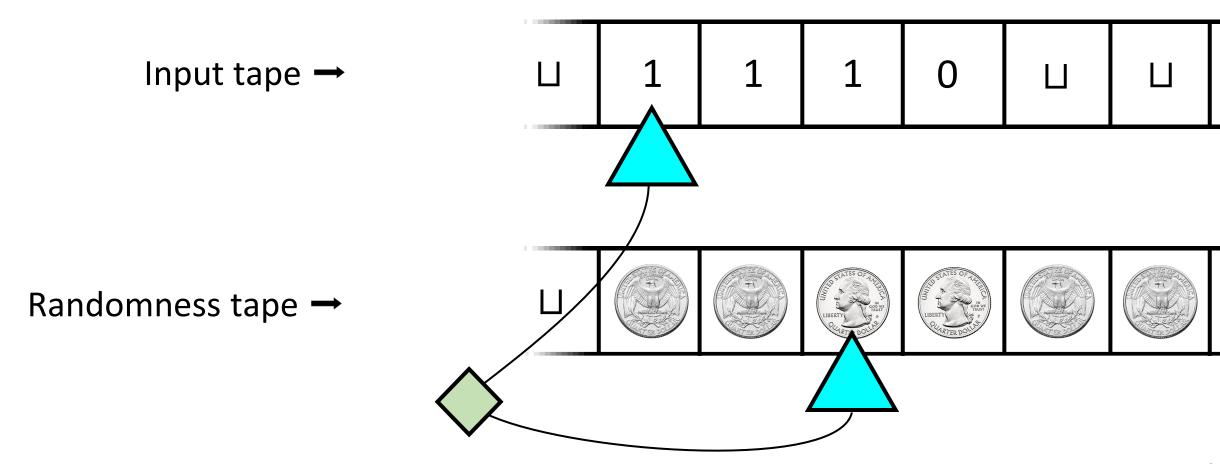
Instructor: William Hoza

Which problems

can be solved

through computation?

Randomized Turing machines

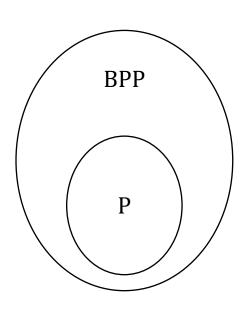


Identity testing: Recap

- We proved IDENTICALLY-ZERO ∈ BPP
- Therefore, we should consider IDENTICALLY-ZERO to be tractable
- Is this a counterexample to the idea that P is the set of tractable problems?
- Not necessarily. Maybe IDENTICALLY-ZERO ∈ P

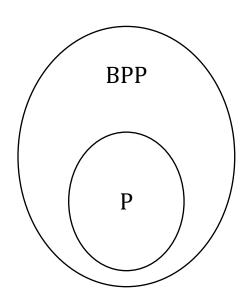
P vs. BPP

- P ⊆ BPP
- Open question: Does P = BPP?
 - Is randomness helpful for computation?
- Profound question about the nature of efficient computation



P vs. BPP

- What would it take to prove $P \neq BPP$?
 - Define a language *Y*
 - Prove $Y \in BPP$
 - Prove $Y \notin P$
 - Good candidate: Y = IDENTICALLY-ZERO
- What would it take to prove P = BPP?



Derandomization

- Suppose $Y \in BPP$
- If we want to decide Y without randomness, what can we do?
- How can we convert a randomized algorithm into a deterministic algorithm?

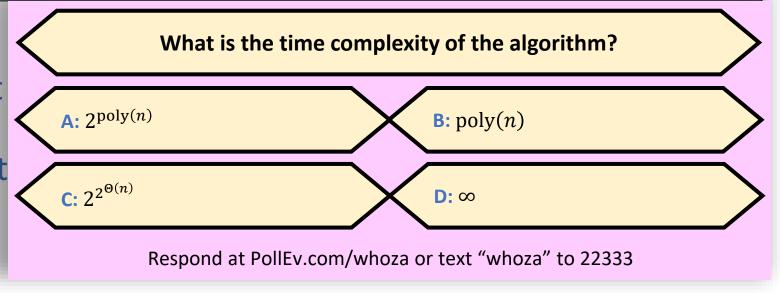
Brute-force derandomization

- Let M be a randomized Turing machine that decides Y with error probability 1/3 and time complexity n^k
- Deterministic algorithm that decides Y: Given $w \in \{0, 1\}^n$:
 - 1. For every $x \in \{0, 1\}^{n^k}$:
 - a) Simulate M, initialized with w on tape 1 and x on tape 2
 - b) Keep a count of how many simulations accept
 - 2. If more than half of the simulations accepted, then accept. Otherwise, reject

Brute-force derandomization: Correctness

- 1. For every $x \in \{0, 1\}^{n^k}$:
 - a) Simulate M, initialized with w on tape 1 and x on tape 2
 - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject

- If $w \in Y$, then at least
- If $w \notin Y$, then at most



Brute-force derandomization: Time complexity

- 1. For every $x \in \{0, 1\}^{n^k}$:
 - a) Simulate M, initialized with w on tape 1 and x on tape 2
 - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject

- Time complexity: $2^{\text{poly}(n)}$
- This algorithm does not show that P = BPP, but it does show that even randomized algorithms have limitations. For example, HALT ∉ BPP

The complexity class EXP

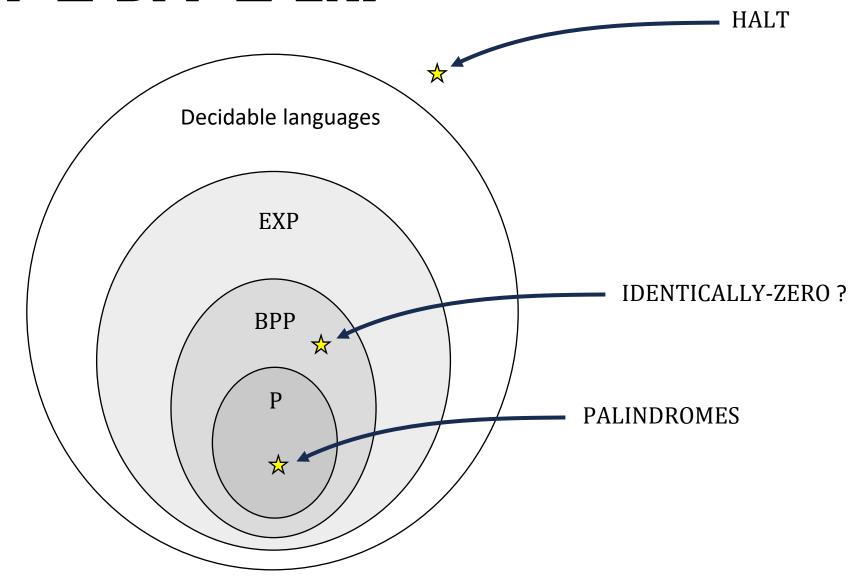
Definition:

$$EXP = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time } 2^{\text{poly}(n)}\}$$

$$= \bigcup_{k=1}^{\infty} \text{TIME}\left(2^{n^k}\right)$$

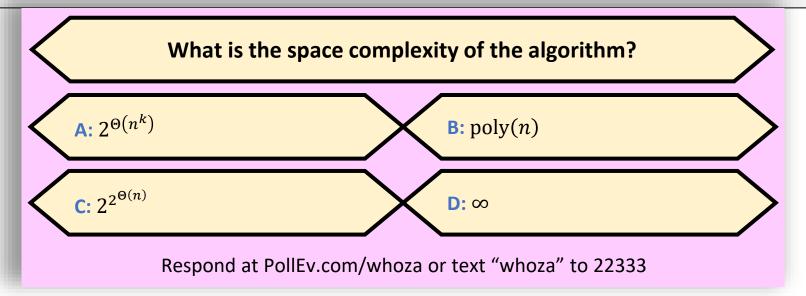
• Brute-force derandomization proves $BPP \subseteq EXP$

$P \subseteq BPP \subseteq EXP$



Brute-force derandomization: Space complexity

- 1. For every $x \in \{0, 1\}^{n^k}$:
 - a) Simulate M, initialized with w on tape 1 and x on tape 2
 - b) Keep a count of how many simulations accept
- 2. If more than half of the simulations accepted, then accept. Otherwise, reject



The complexity class PSPACE

Definition:

PSPACE = $\{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in } space poly(n)\}$

• Brute-force derandomization proves that $BPP \subseteq PSPACE$

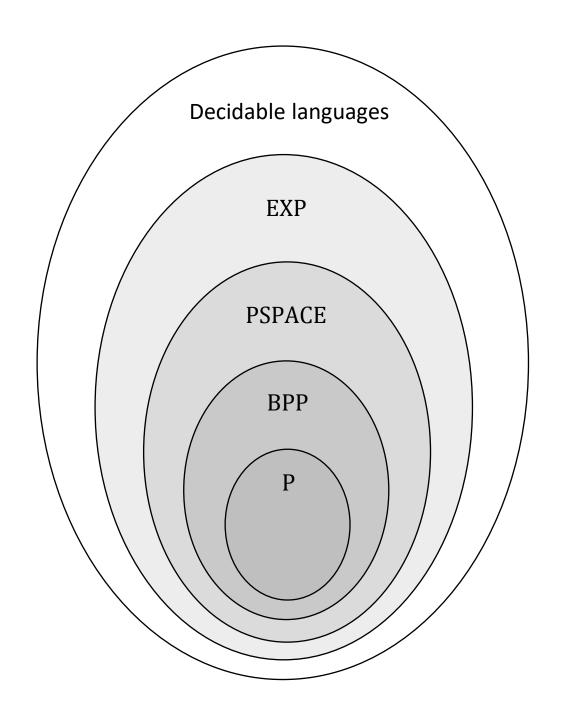
PSPACE vs. EXP

- Theorem 1: BPP \subseteq EXP
- Theorem 2: BPP \subseteq PSPACE
- Which theorem is stronger?
- How does PSPACE compare to EXP?

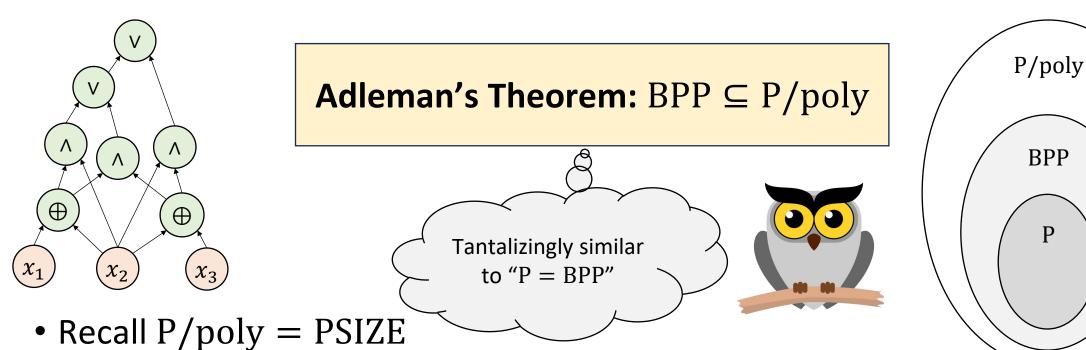
Theorem: PSPACE \subseteq EXP

- **Proof (1 slide):** Let M be a Turing machine that decides a language Y
- Exercise 4: For each input, $Time \leq C^{Space+1}$, where C depends only on M
- When Space = poly(n), we get

$$Time \le C^{\text{poly}(n)} = \left(2^{\log C}\right)^{\text{poly}(n)} = 2^{(\log C) \cdot \text{poly}(n)} = 2^{\text{poly}(n)}$$

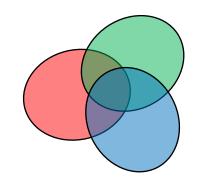


Derandomization beyond brute force



- Note: There is no randomness in the definitions of P/poly and PSIZE!
- Proof of Adleman's theorem: Next 5 slides

The union bound



Key fact from probability theory:

The Union Bound: For any events E_1, E_2, \dots, E_k , we have

$$\Pr[E_1 \text{ or } E_2 \text{ or } ... \text{ or } E_k] \le \Pr[E_1] + \Pr[E_2] + \cdots + \Pr[E_k]$$

• Example: If we pick two cards from a deck, then

Pr[card 1 is a queen or card 2 is a queen]
$$\leq \frac{1}{13} + \frac{1}{13} = \frac{2}{13}$$

Adleman proof step 1: Amplification

- Let $Y \in BPP$
- By the amplification lemma, there exists a poly-time randomized Turing machine M such that for every $n \in \mathbb{N}$ and every $w \in \{0, 1\}^n$:
 - If $w \in Y$, then $Pr[M \text{ accepts } w] > 1 1/2^n$
 - If $w \notin Y$, then $\Pr[M \text{ accepts } w] < 1/2^n$

Adleman proof step 2: Good random bits

- Let $w, x \in \{0, 1\}^*$
- **Definition:** *x* is good relative to *w* if:
 - $w \in Y$ and M accepts when tape 1 is initialized with w and tape 2 is initialized with x, or
 - $w \notin Y$ and M rejects when tape 1 is initialized with w and tape 2 is initialized with x

Adleman proof step 2: Good random bits

Lemma: For every n, there exists $x_* \in \{0, 1\}^{n^k}$ that is good relative to every $w \in \{0, 1\}^n$

• **Proof:** Pick $x \in \{0, 1\}^{n^k}$ uniformly at random. Then

Union Bound

$$\Pr\left[\text{there exists } w \in \{0,1\}^n \atop \text{relative to which } x \text{ is bad}\right] \leq \sum_{w \in \{0,1\}^n} \Pr[x \text{ is bad relative to } w] < 2^n \cdot \frac{1}{2^n} = 1$$

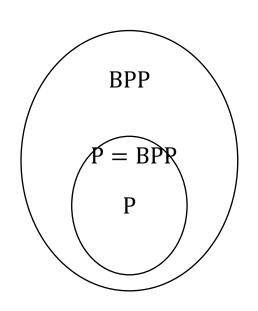
• The claim follows!

Adleman proof step 3: Advice

- Use the "good random bits" x_* as advice
- Given w and x_* , simulate M with tape 1 initialized with w and tape 2 initialized with x_*
- This shows $Y \in P/\text{poly}$

P vs. BPP

- We have seen two derandomization methods:
 - Brute-force
 - Adleman's theorem
- There are other methods that are more sophisticated
 - (Beyond the scope of this course)
- Because of these other methods, most experts conjecture P = BPP!



Is P a good model of tractability?

Robustness of P, revisited

- Let $Y \subseteq \{0,1\}^*$. If $Y \notin P$, then Y cannot be decided by...
 - A poly-time one-tape Turing machine
 - A poly-time multi-tape Turing machine
 - A poly-time word RAM program
 - A poly-time randomized Turing machine (assuming P = BPP)
- **OBJECTION:** "This still leaves open the possibility that I could somehow build a device that decides Y in polynomial time."

Extended Church-Turing Thesis

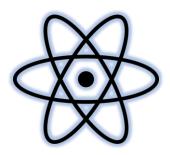
Extended Church-Turing Thesis:

For every $Y \subseteq \{0,1\}^*$, it is physically possible to build a device

that decides Y in polynomial time if and only if $Y \in P$.

- If it were true, the thesis would justify studying P
- But the thesis is probably false!
- Key challenge: Quantum Computation

Quantum computing



- Properly studying quantum computing is beyond the scope of this course
- We will briefly circle back to it later
- For now, let's focus on P
- P is probably not the ultimate model of efficient computation...
- but it is still a valuable model

Which problems can be solved through computation? CLASSICAL