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Which problems
can be solved

through computation?



Randomized Turing machines
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|[dentity testing: Recap

 We proved IDENTICALLY-ZERO € BPP
 Therefore, we should consider IDENTICALLY-ZERO to be tractable

* |s this a counterexample to the idea that P is the set of tractable

problems?

* Not necessarily. Maybe IDENTICALLY-ZERO € P



P vs. BPP BPP

P € BPP

* Open question: Does P = BPP?

* |s randomness helpful for computation?

* Profound question about the nature of efficient computation



P vs. BPP BPP

* What would it take to prove P += BPP?
e Define a language Y
* Prove Y € BPP
* ProveY & P

e Good candidate: Y = IDENTICALLY-ZERO

* What would it take to prove P = BPP?



Derandomization

* Suppose Y € BPP
* |f we want to decide Y without randomness, what can we do?

* How can we convert a randomized algorithm into a deterministic

algorithm?



Brute-force derandomization

* Let M be a randomized Turing machine that decides Y with error

probability 1/3 and time complexity n*

* Deterministic algorithm that decides Y: Given w € {0, 1}":

1. Forevery x € {0, 1}"k:
a) Simulate M, initialized with w on tape 1 and x on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject




Brute-force derandomization: Correctness

1. Foreveryx € {0, 1}”k:
a) Simulate M, initialized with w on tape 1 and x on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the time complexity of the algorithm?

e Ifw €Y, then at least
< A: 2poly(n) >< B: poly(n)

e lfw &Y, then at most
<C: ZZG(n) ><D:oo
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Brute-force derandomization: Time complexity

1. Foreveryx € {0, 1}”k:
a) Simulate M, initialized with w on tape 1 and x on tape 2
b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

* Time complexity: 2P°ly(™) ¢

* This algorithm does not show that P = BPP, but it does show that even

randomized algorithms have limitations. For example, HALT & BPP



The complexity class EXP

e Definition:

EXP = {Y c {0,1}" : Y(can)be decided in time ZPOIY(")}

- D TIME (2"")
k=1

* Brute-force derandomization proves BPP € EXP
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P € BPP © EXP

HALT

—

Decidable languages

IDENTICALLY-ZERO ?
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Brute-force derandomization: Space complexity

1.

2.

For every x € {0, 1}”k:

a)

b)

Simulate M, initialized with w on tape 1 and x on tape 2

Keep a count of how many simulations accept

If more than half of the simulations accepted, then accept. Otherwise, reject

< What is the space complexity of the algorithm?

D

< A: 20(n") >< B: poly(n)

>

<o X o

D

Respond at PollEv.com/whoza or text “whoza” to 22333
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The complexity class PSPACE

e Definition:

PSPACE ={Y € {0,1}" : Y can be decided in space poly(n)}

* Brute-force derandomization proves that BPP € PSPACE
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PSPACE vs. EXP

* Theorem 1: BPP € EXP
e Theorem 2: BPP € PSPACE

* Which theorem is stronger?

* How does PSPACE compare to EXP?
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Theorem: PSPACE € EXP

* Proof (1 slide): Let M be a Turing machine that decides a language Y

c>pacetl where C depends only on M

e Exercise 4: For each input, Time <
* When Space = poly(n), we get

Time < Cpoly(n) — (ZIOg c)poly(n) _ 2(10g C)-poly(n) _ Zpoly(n)
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Decidable languages

PSPACE
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Derandomization beyond brute force &8 4

Adleman’s Theorem: BPP € P/poly

BPP

Tantalizingly similar
to “P = BPP”

* Recall P/poly = PSIZE
* Note: There is no randomness in the definitions of P/poly and PSIZE!

* Proof of Adleman’s theorem: Next 5 slides
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The union bound

» Key fact from probability theory:

The Union Bound: For any events E4, E>, ..., E, we have

Pr[E; or E, or...or E;| < Pr[E;] + Pr[E,] + :-- + Pr[E}]

* Example: If we pick two cards from a deck, then

: : 1 1 2
Pr|card 1 is a queen or card 2 is a queen] < = + — ==
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Adleman proof step 1: Amplification

*LetY € BPP

* By the amplification lemma, there exists a poly-time randomized
Turing machine M such that for everyn € N and every w € {0, 1}":

* Ifw €Y, then Pr[M acceptsw] > 1 —1/2"

e Ifw &Y, then Pr[M accepts w| < 1/2"
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Adleman proof step 2: Good random bits

* letw,x € {0,1}"

* Definition: x is good relative to w if:

* w €Y and M accepts when tape 1 is initialized with w and tape 2 is initialized with x, or

* w & Y and M rejects when tape 1 is initialized with w and tape 2 is initialized with x
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Adleman proof step 2: Good random bits

. k .
Lemma: For every n, there exists x, € {0,1}"* that s

good relative to every w € {0, 1}"

 Proof: Pick x € {0, 1} uniformly at random. Then Jnien Bound

K\J

Pr ’ there exists w € {0, 1}"

relative to which x is badl 21

we{0,1}"

 The claim follows!

1
< z Pr|x is bad relative to w| < 2™ - —

=1
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* Given w and x,, simulate M with tape 1 initialized with w and tape 2

Adleman proof step 3: Advice

e Use the “good random bits” x, as advice

initialized with x,

* This shows Y € P/poly
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P vs. BPP BPP

* We have seen two derandomization methods:

* Brute-force

e Adleman’s theorem

* There are other methods that are more sophisticated

» (Beyond the scope of this course)

* Because of these other methods, most experts conjecture P = BPP!
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Is P a good model of tractability?



Robustness of P, revisited

e letY € {0,1}*.If Y & P, then Y cannot be decided by...
* A poly-time one-tape Turing machine
* A poly-time multi-tape Turing machine
* A poly-time word RAM program

* A poly-time randomized Turing machine (assuming P = BPP)

* OBJECTION: “This still leaves open the possibility that | could somehow

build a device that decides Y in polynomial time.”
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Extended Church-Turing Thesis

aded Church-Turing

* .

For every Y € {0,

des Y in polynomial time if and only

ossible to build a device

* |f it were true, the thesis would justify studying P
* But the thesis is probably false!

e Key challenge: Quantum Computation
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Quantum computing

* Properly studying quantum computing is beyond the scope of this course
* We will briefly circle back to it later

 For now, let’s focus on P

* P is probably not the ultimate model of efficient computation...

e butitis still a valuable model
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Which problems
can be solved

through/somputation?
CLASSICAL
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