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Which problems

can be solved

through computation?
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Randomized Turing machines
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Identity testing: Recap

• We proved IDENTICALLY-ZERO ∈ BPP

• Therefore, we should consider IDENTICALLY-ZERO to be tractable

• Is this a counterexample to the idea that P is the set of tractable 

problems?

• Not necessarily. Maybe IDENTICALLY-ZERO ∈ P
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P vs. BPP

• P ⊆ BPP

• Open question: Does P = BPP?

• Is randomness helpful for computation?

• Profound question about the nature of efficient computation
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P vs. BPP

• What would it take to prove P ≠ BPP?

• Define a language 𝑌

• Prove 𝑌 ∈ BPP

• Prove 𝑌 ∉ P

• Good candidate: 𝑌 = IDENTICALLY-ZERO

• What would it take to prove P = BPP?
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Derandomization

• Suppose 𝑌 ∈ BPP

• If we want to decide 𝑌 without randomness, what can we do?

• How can we convert a randomized algorithm into a deterministic 

algorithm?
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Brute-force derandomization

• Let 𝑀 be a randomized Turing machine that decides 𝑌 with error 

probability 1/3 and time complexity 𝑛𝑘

• Deterministic algorithm that decides 𝑌: Given 𝑤 ∈ 0, 1 𝑛:
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1. For every 𝑥 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject



Brute-force derandomization: Correctness

• If 𝑤 ∈ 𝑌, then at least two thirds of the simulations will accept

• If 𝑤 ∉ 𝑌, then at most one third of the simulations will accept
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1. For every 𝑥 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the time complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 22Θ 𝑛

B: poly 𝑛

D: ∞

A: 2poly 𝑛



Brute-force derandomization: Time complexity

• Time complexity: 2poly 𝑛  

• This algorithm does not show that P = BPP, but it does show that even 

randomized algorithms have limitations. For example, HALT ∉ BPP
10

1. For every 𝑥 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject



The complexity class EXP

• Definition:

EXP = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time 2poly 𝑛

= ራ

𝑘=1

∞

TIME 2𝑛𝑘

• Brute-force derandomization proves BPP ⊆ EXP

11



P ⊆ BPP ⊆ EXP 
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Brute-force derandomization: Space complexity
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1. For every 𝑥 ∈ 0, 1 𝑛𝑘
:

a) Simulate 𝑀, initialized with 𝑤 on tape 1 and 𝑥 on tape 2

b) Keep a count of how many simulations accept

2. If more than half of the simulations accepted, then accept. Otherwise, reject

What is the space complexity of the algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: 22Θ 𝑛

A: 2Θ 𝑛𝑘

D: ∞

B: poly 𝑛



The complexity class PSPACE

• Definition: 

PSPACE = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in space poly 𝑛

• Brute-force derandomization proves that BPP ⊆ PSPACE
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PSPACE vs. EXP

• Theorem 1: BPP ⊆ EXP

• Theorem 2: BPP ⊆ PSPACE

• Which theorem is stronger?

• How does PSPACE compare to EXP?
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• Proof (1 slide): Let 𝑀 be a Turing machine that decides a language 𝑌

• Exercise 4: For each input, Time ≤ 𝐶Space+1, where 𝐶 depends only on 𝑀

• When Space = poly 𝑛 , we get

Time ≤ 𝐶poly 𝑛 = 2log 𝐶 poly 𝑛
= 2 log 𝐶 ⋅poly 𝑛 = 2poly 𝑛
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Theorem: PSPACE ⊆ EXP
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Derandomization beyond brute force

• Recall P/poly = PSIZE

• Note: There is no randomness in the definitions of P/poly and PSIZE!

• Proof of Adleman’s theorem: Next 5 slides
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Adleman’s Theorem: BPP ⊆ P/poly
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The union bound

• Key fact from probability theory:

• Example: If we pick two cards from a deck, then

Pr card 1 is a queen or card 2 is a queen ≤
1

13
+

1

13
=

2

13
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The Union Bound: For any events 𝐸1, 𝐸2, … , 𝐸𝑘, we have

Pr 𝐸1 or 𝐸2 or … or 𝐸𝑘 ≤ Pr 𝐸1 + Pr 𝐸2 + ⋯ + Pr 𝐸𝑘



Adleman proof step 1: Amplification

• Let 𝑌 ∈ BPP

• By the amplification lemma, there exists a poly-time randomized 

Turing machine 𝑀 such that for every 𝑛 ∈ ℕ and every 𝑤 ∈ 0, 1 𝑛:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 > 1 − 1/2𝑛

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 < 1/2𝑛
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Adleman proof step 2: Good random bits

• Let 𝑤, 𝑥 ∈ 0, 1 ∗

• Definition: 𝑥 is good relative to 𝑤 if:

• 𝑤 ∈ 𝑌 and 𝑀 accepts when tape 1 is initialized with 𝑤 and tape 2 is initialized with 𝑥, or

• 𝑤 ∉ 𝑌 and 𝑀 rejects when tape 1 is initialized with 𝑤 and tape 2 is initialized with 𝑥
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Adleman proof step 2: Good random bits

• Proof: Pick 𝑥 ∈ 0, 1 𝑛𝑘
 uniformly at random. Then

Pr
there exists 𝑤 ∈ {0, 1}𝑛 

relative to which 𝑥 is bad
≤ ෍

𝑤∈ 0,1 𝑛

Pr 𝑥 is bad relative to 𝑤 < 2𝑛 ⋅
1

2𝑛
= 1

• The claim follows!
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Lemma: For every 𝑛, there exists 𝑥∗ ∈ 0, 1 𝑛𝑘
 that is 

good relative to every 𝑤 ∈ 0, 1 𝑛

Union Bound



Adleman proof step 3: Advice

• Use the “good random bits” 𝑥∗ as advice

• Given 𝑤 and 𝑥∗, simulate 𝑀 with tape 1 initialized with 𝑤 and tape 2 

initialized with 𝑥∗

• This shows 𝑌 ∈ P/poly
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P vs. BPP

• We have seen two derandomization methods:

• Brute-force

• Adleman’s theorem

• There are other methods that are more sophisticated

• (Beyond the scope of this course)

• Because of these other methods, most experts conjecture P = BPP!
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Is P a good model of tractability?
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Robustness of P, revisited

• Let 𝑌 ⊆ 0, 1 ∗. If 𝑌 ∉ P, then 𝑌 cannot be decided by…

• A poly-time one-tape Turing machine

• A poly-time multi-tape Turing machine

• A poly-time word RAM program

• A poly-time randomized Turing machine (assuming P = BPP)

• OBJECTION: “This still leaves open the possibility that I could somehow 

build a device that decides 𝑌 in polynomial time.”
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Extended Church-Turing Thesis

• If it were true, the thesis would justify studying P

• But the thesis is probably false!

• Key challenge: Quantum Computation
27

Extended Church-Turing Thesis:

For every 𝑌 ⊆ 0, 1 ∗, it is physically possible to build a device 

that decides 𝑌 in polynomial time if and only if 𝑌 ∈ P.



Quantum computing

• Properly studying quantum computing is beyond the scope of this course

• We will briefly circle back to it later

• For now, let’s focus on P

• P is probably not the ultimate model of efficient computation…

• but it is still a valuable model
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Which problems

can be solved

through computation?
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