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Which problems
can be solved

through computation?



Randomized Turing machines

Input tape — L 1 1 1 0 L L

Randomness tape =




The complexity class BPP s 3

* Definition: BPP is the set of languages Y € {0, 1}* such that there
exists a randomized polynomial-time Turing machine that decides Y

with error probability 1/3

* “Bounded-error Probabilistic Polynomial-time”



Example: High school algebra

« “Expand and simplify: (x + 1) - (x — 1)”

\ J
Y

This type of expression is

called an arithmetic formula

* How difficult is this type of exercise?



|[dentity testing

* Problem: Given an arithmetic formula F, determine whether F = 0

* As a language:

IDENTICALLY-ZERO = {(F) : F is an arithmetic formula and F = 0}



|[dentity testing example

« Given:F=(ab+a—-—b—-1)-(cd—ad+a—-c)- (b—e)+(bd+d—-b—-1)-(bc+ea—ab—ce)-(1—a)

e Expand:
F = ab?cd — eabcd — a?b?*d + ea’bd — ab?c + eabc + a*b? — ea?b + acdb — eacd — a?db + ea?d — ach
+ eac + a?b — ea® — b%cd + ebcd + b?da — ebda + b*cb — ebc — b?a + eba — cdb + ecd + dab — eda + cb
—ec—ab + ea — ea’bd + eabd + ea’b — eab — ea®d + ead + ea® — ea + a*b?*d — ab*d — a’b? + ab?
+ a?db — adb — a?b + ab — b*cda + b%*cd + bcdea — bede + b*ca — b*c — bcea + bce — cdab + cdb + cab

— cb + cdea — cde — cea + ce

e Everything cancelsout: F = 0



Complexity of identity testing

* Expanding F takes 22 time in some cases
*Eg, F=(x+7y)-(x+y)-(x+y) - (x+y)
* Open Question: Is IDENTICALLY-ZERO € P?

* Next 5 slides: We will prove IDENTICALLY-ZERO € BPP



|[dentity testing algorithm: Approach

e Goal: Figure out whether F = 0, where F is an arithmetic formula

e Strategy: Compute F(x) for some X

e Rationale: If F = 0, then F(x) = 0 forall x &

e Difficulty: Even if F % 0, there still might be X such that F(x) = 0 €

* How often can this occur?



How many roots can a nonzero degree-d two-variable polynomial >

COuntlﬂg FO< have?

<A:Uptod ><B:Uptod2 >
_ . e D: Only finitely many, but there is
< C: It might have infinitely many >< 6 bound in terms of d >

Respond at PollEv.com/whoza or text “whoza” to 22333

* Fundamental Theorem of Algebra = Every nonzero degree-d

univariate polynomial has at most d real roots

 What about a multivariate polynomial?
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How common are roots?

* Evenif F # 0, it might have infinitely

many roots =
* Insight: Roots are nevertheless “rare”

* If we pick x at random, it is unlikely that

F(x) =0 &

Roots of F, where

F(X) = x, — x#
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Roots of F, where

Polynomial Identity Lemma F) = 2, — 22

e Let F : R* - R be a multivariate
polynomial of degree at most d in each

variable individually

e Let S be a finite subset of R

Polynomial Identity Lemma: X1

If F % 0, then |{¥ € S“ : F(¥) = 0}| < dk - [S|*™* | proof: On chalkboard
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Theorem: IDENTICALLY-ZERO € BPP

* Polynomial time «
* Correctness proof:

* Degree < d (can prove by induction)

]

Given F with k variables and d leaves:

1. LetS =1{1,...,3dk}
2. Pick ¢ € S uniformly at random

3. Construct F' by replacing x; with ¢;

4. If (F') € EQUALS-ZERO, accept,

otherwise reject

e If F =0, then Pr<

Which of the following best describes the algorithm? >

A: The algorithm behaves
correctly on most inputs

e If F £ 0, then b<

X

B: The amount of time it uses
is rarely more than polynomial

C: For every input, the algorithm

Pl

Pr[accept] = ]<is likely to behave correctly

D: It is likely that for every input, > 'k 1

the algorithm behaves correctly

k3

Respond at PollEv.com/whoza or text “whoza” to 22333

13



|[dentity testing: Recap

 We proved IDENTICALLY-ZERO € BPP
 Therefore, we should consider IDENTICALLY-ZERO to be tractable

* Does this mean P is a bad model of tractability?

* Not necessarily. Maybe IDENTICALLY-ZERO € P
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