#### CMSC 28100

# Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

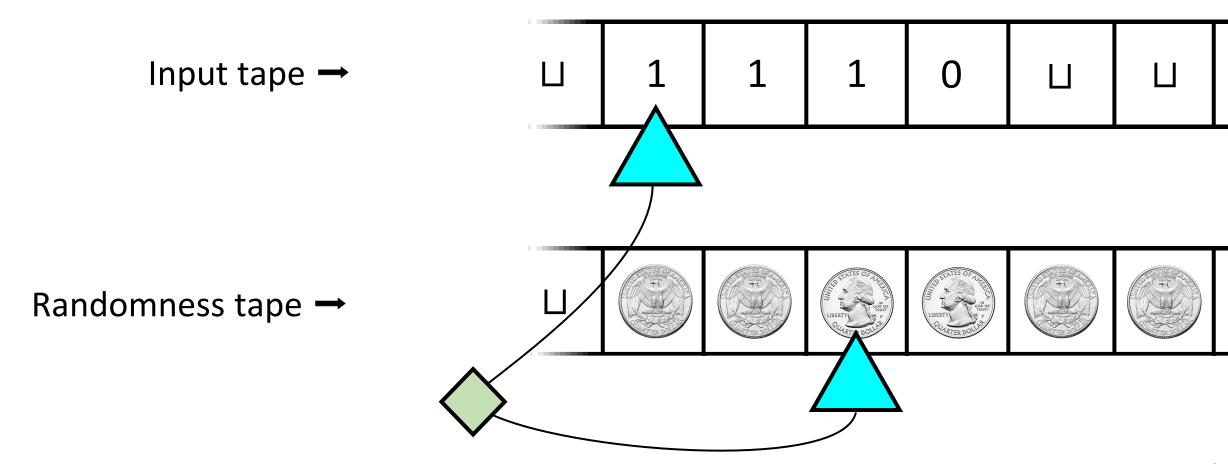


Which problems

can be solved

through computation?

## Randomized Turing machines



## The complexity class BPP



• **Definition:** BPP is the set of languages  $Y \subseteq \{0,1\}^*$  such that there exists a randomized polynomial-time Turing machine that decides Y with error probability 1/3

• "Bounded-error Probabilistic Polynomial-time"

## Example: High school algebra

• "Expand and simplify:  $(x + 1) \cdot (x - 1)$ "

This type of expression is

called an arithmetic formula

How difficult is this type of exercise?

## Identity testing

• **Problem:** Given an arithmetic formula F, determine whether  $F \equiv 0$ 

As a language:

IDENTICALLY-ZERO =  $\{\langle F \rangle : F \text{ is an arithmetic formula and } F \equiv 0\}$ 

## Identity testing example

• Given:  $F = (ab + a - b - 1) \cdot (cd - ad + a - c) \cdot (b - e) + (bd + d - b - 1) \cdot (bc + ea - ab - ce) \cdot (1 - a)$ 

#### Expand:

$$F \equiv ab^{2}cd - eabcd - a^{2}b^{2}d + ea^{2}bd - ab^{2}c + eabc + a^{2}b^{2} - ea^{2}b + acdb - eacd - a^{2}db + ea^{2}d - acb + eac + a^{2}b - ea^{2} - b^{2}cd + ebcd + b^{2}da - ebda + b^{2}cb - ebc - b^{2}a + eba - cdb + ecd + dab - eda + cb - ec - ab + ea - ea^{2}bd + eabd + ea^{2}b - eab - ea^{2}d + ead + ea^{2} - ea + a^{2}b^{2}d - ab^{2}d - a^{2}b^{2} + ab^{2} + a^{2}db - adb - a^{2}b + ab - b^{2}cda + b^{2}cd + bcdea - bcde + b^{2}ca - b^{2}c - bcea + bce - cdab + cdb + cab - cb + cdea - cde - cea + ce$$

• Everything cancels out:  $F \equiv 0$ 

## Complexity of identity testing

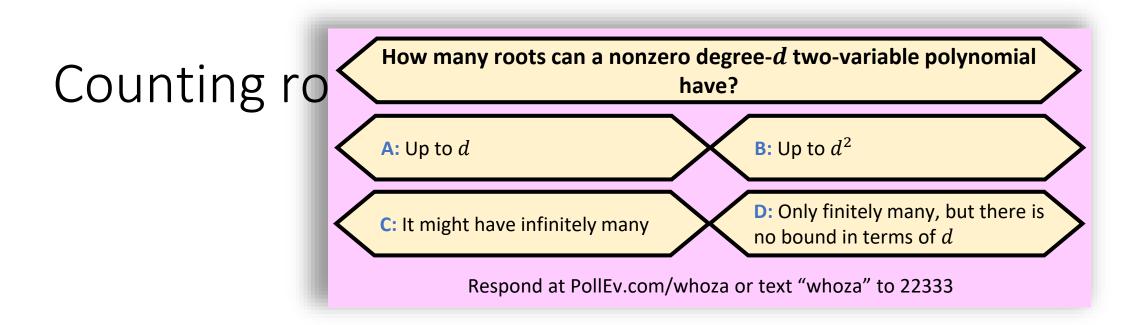
• Expanding F takes  $2^{\Omega(n)}$  time in some cases  $\stackrel{\textstyle ext{\@width}}{=}$ 

• E.g., 
$$F = (x + y) \cdot (x + y) \cdot (x + y) \cdots (x + y)$$

- Open Question: Is IDENTICALLY-ZERO  $\in \mathbb{P}$ ?
- Next 5 slides: We will prove IDENTICALLY-ZERO ∈ BPP

#### Identity testing algorithm: Approach

- Goal: Figure out whether  $F \equiv 0$ , where F is an arithmetic formula
- Strategy: Compute  $F(\vec{x})$  for some  $\vec{x}$
- Rationale: If  $F \equiv 0$ , then  $F(\vec{x}) = 0$  for all  $\vec{x} \cong$
- **Difficulty:** Even if  $F \not\equiv 0$ , there still might be  $\vec{x}$  such that  $F(\vec{x}) = 0$
- How often can this occur?



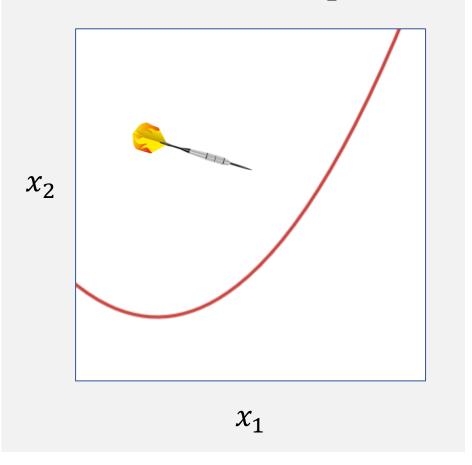
- Fundamental Theorem of Algebra  $\Rightarrow$  Every nonzero degree-d univariate polynomial has at most d real roots
- What about a multivariate polynomial?

#### How common are roots?

- Even if  $F \not\equiv 0$ , it might have infinitely many roots  $\stackrel{\textstyle \smile}{\cong}$
- Insight: Roots are nevertheless "rare"
- If we pick  $\vec{x}$  at random, it is unlikely that  $F(\vec{x}) = 0$

Roots of F, where

$$F(\vec{x}) = x_2 - x_1^2$$

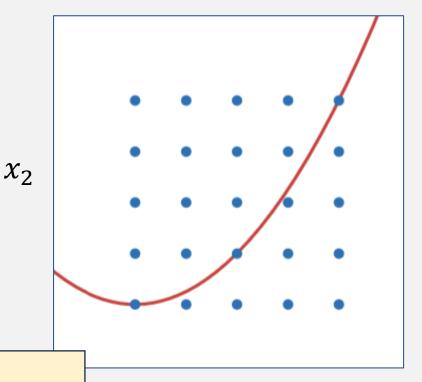


## Polynomial Identity Lemma

- Let  $F:\mathbb{R}^k \to \mathbb{R}$  be a multivariate polynomial of degree at most d in each variable individually
- Let S be a finite subset of  $\mathbb{R}$

#### Roots of F, where

$$F(\vec{x}) = x_2 - x_1^2$$



#### **Polynomial Identity Lemma:**

If 
$$F \not\equiv 0$$
, then  $|\{\vec{x} \in S^k : F(\vec{x}) = 0\}| \le dk \cdot |S|^{k-1}$ 

 $x_1$ 

Proof: On chalkboard

#### **Theorem:** IDENTICALLY-ZERO ∈ BPP

- Polynomial time
- Correctness proof:
- Degree  $\leq d$  (can prove by induction)

Given F with k variables and d leaves:

- 1. Let  $S = \{1, ..., 3dk\}$
- 2. Pick  $\vec{c} \in S^k$  uniformly at random
- 3. Construct F' by replacing  $x_i$  with  $c_i$
- 4. If  $\langle F' \rangle \in \text{EQUALS-ZERO}$ , accept, otherwise reject

• If 
$$F \equiv 0$$
, then P

• If  $F \not\equiv 0$ , then b

Which of the following best describes the algorithm?

A: The algorithm behaves correctly on most inputs

**C:** For every input, the algorithm is likely to behave correctly

**B:** The amount of time it uses is rarely more than polynomial

**D:** It is likely that for every input, the algorithm behaves correctly

$$\frac{k}{dk} = \frac{1}{3}$$

Respond at PollEv.com/whoza or text "whoza" to 22333

## Identity testing: Recap

- We proved IDENTICALLY-ZERO ∈ BPP
- Therefore, we should consider IDENTICALLY-ZERO to be tractable
- Does this mean P is a bad model of tractability?
- Not necessarily. Maybe IDENTICALLY-ZERO ∈ P