
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Which problems

can be solved

through computation?

2

Randomized computation

• Researchers often use randomness to answer questions

• Random sampling for opinion polls

• Randomized controlled trials in science/medicine

• What if we incorporate this ability into our computational model?

3

Randomized Turing machines

4

1 1 0Input tape

Randomness tape

⊔ ⊔1⊔

⊔

Randomized Turing machines

• Let 𝑇: ℕ → ℕ be a function (time bound)

• Definition: A randomized time-𝑇 Turing machine is a two-tape Turing machine

𝑀 such that for every 𝑛 ∈ ℕ, every 𝑤 ∈ 0, 1 𝑛, and every 𝑥 ∈ 0, 1 𝑇 𝑛 , if we

initialize 𝑀 with 𝑤 on tape 1 and 𝑥 on tape 2, then it halts within 𝑇 𝑛 steps

• Interpretation: 𝑤 is the input and 𝑥 is the coin tosses

• (Giving 𝑀 more than 𝑇 𝑛 random bits would be pointless)

5

Acceptance probability

• Let 𝑀 be a randomized Turing machine and let 𝑤 ∈ 0, 1 ∗

• To run 𝑀 on 𝑤, we select 𝑥 ∈ 0, 1 𝑇 𝑛 uniformly at random and

initialize 𝑀 with 𝑤 on tape 1 and 𝑥 on tape 2

Pr 𝑀 accepts 𝑤 =
𝑥: 𝑀 accepts 𝑤 when tape 2 is initialized with 𝑥

2𝑇 𝑛

6

Randomized polynomial time, attempt #1

• Let 𝑌 ⊆ 0, 1 ∗

• Definition: 𝑌 ∈ NP if there exists a randomized polynomial-time

Turing machine 𝑀 such that for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≠ 0

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 = 0

• “Nondeterministic Polynomial-time”

7

“Nondeterministic
Turing machine”

Example: CLIQUE

• CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Claim: CLIQUE ∈ NP

• Proof:

1. Pick a random subset of the vertices

2. Check if it is a 𝑘-clique

3. If yes, accept; if no, reject.

8

How to interpret NP

• Can we conclude that CLIQUE is tractable?

• No!

• Even if 𝐺 has a 𝑘-clique, Pr accept might be extremely small

• When the algorithm rejects, it gives us practically no information

9

How to interpret NP

• NP is not a good model of tractability

• NP is an extremely useful conceptual tool…

• More on this later

10

Which problems

can be solved

through computation?

11

Error probability

• Let 𝑀 be a randomized time-𝑇 Turing machine for some 𝑇: ℕ → ℕ

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝛿 ∈ 0, 1

• We say 𝑀 decides 𝑌 with error probability 𝛿 if for every 𝑤 ∈ 0, 1 ∗:

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 ≥ 1 − 𝛿

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≤ 𝛿

12

The complexity class BPP

• Definition: BPP is the set of languages 𝑌 ⊆ 0, 1 ∗ such that there

exists a randomized polynomial-time Turing machine that decides 𝑌

with error probability 1/3

• “Bounded-error Probabilistic Polynomial-time”

13

Amplification lemma

• Suppose a language 𝑌 ⊆ 0, 1 ∗ can be decided by a time-𝑇 Turing

machine 𝑀0 with error probability 1/3

• Let 𝑘 ∈ ℕ be any constant

• As 𝑛 → ∞, the error probability goes to 0 extremely rapidly!

14

Amplification Lemma: There exists a randomized time-𝑇′ Turing machine

that decides 𝑌 with error probability 1/2𝑛𝑘
, where 𝑇′ 𝑛 = 𝑂 𝑇 𝑛 ⋅ 𝑛𝑘 .

Proof of the amplification lemma (1 slide)

• For simplicity, assume that for every 𝑤 ∈ 𝑌, we have Pr 𝑀0 accepts 𝑤 = 1

• For 𝑤 ∉ 𝑌, we merely assume Pr 𝑀0 accepts 𝑤 ≤ 1/2

• If 𝑤 ∈ 𝑌, then Pr 𝑀 accepts 𝑤 = 1

• If 𝑤 ∉ 𝑌, then Pr 𝑀 accepts 𝑤 ≤ 1/2 𝑛𝑘
= 1/2𝑛𝑘

15

Given 𝑤 ∈ 0, 1 𝑛:

1) For 𝑖 = 1 to 𝑛𝑘:

a) Simulate 𝑀0 on 𝑤 using fresh random bits. If it rejects, reject.

2) Accept.

Time complexity:

𝑂 𝑇 𝑛 ⋅ 𝑛𝑘

If 𝑀0 uses 𝑅(𝑛) many random bits, then how many random bits
does the new TM use?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑅 𝑛 𝑘

A: 𝑅 𝑛 + 𝑛𝑘

D: Not enough information

B: 𝑅(𝑛) ⋅ 𝑛𝑘

BPP as a model of tractability

• Because of the amplification lemma, languages in BPP should be

considered “tractable”

• A mistake that occurs with probability 1/2100 can be safely ignored

• (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)

• Next: An interesting example of a language in BPP

16

Example: High school algebra

• “Expand and simplify: 𝑥 + 1 ⋅ 𝑥 − 1 ”

• How difficult is this type of exercise?

17

This type of expression is

called an arithmetic formula

Arithmetic formulas

• Definition: A 𝑘-variate arithmetic formula is a rooted binary tree

• Each internal node is labeled with + or ×

• Each leaf is labeled with a constant 𝑐 ∈ ℤ or a variable among 𝑥1, … , 𝑥𝑘

• It computes 𝐹: ℝ𝑘 → ℝ

• E.g., 𝐹 𝑥1, 𝑥2 = 𝑥1 − 𝑥2 ⋅ 𝑥1 + 𝑥2

• Warm-up: Let’s think about the case of

zero variables
18

×

+ +

𝑥1 𝑥2𝑥1×

𝑥2−1

Compare to
Boolean formulas

Evaluating an arithmetic formula

• Problem: Given an arithmetic formula with zero variables, determine

whether it evaluates to 0

• Example: 2 + 3 ⋅ 1 − 2 + 5 = 0

• Example: 2 + 3 ⋅ 2 − 1 + 5 ≠ 0

• As a language:

EQUALS-ZERO = 𝐹 ∶ 𝐹 is a 0-variate arithmetic formula and 𝐹 ≡ 0

19

Evaluating an arithmetic formula

• Proof idea: Grade-school arithmetic

• Possible concern: How big are the numbers we are working with?

20

Lemma: EQUALS-ZERO ∈ P

Numbers are not getting terribly big

• Let 𝑐1, 𝑐2, … , 𝑐𝑑 be the constants at the leaves of the formula 𝐹

• Let 𝑀 = max 𝑐1 , 𝑐2 , … , 𝑐𝑑 , 2

• Claim: 𝐹 ≤ 𝑀𝑑. Proof by induction:

• Base case: 𝑑 = 1: trivial

• If 𝐹 = 𝐹𝐿 ⋅ 𝐹𝑅, then 𝐹 = 𝐹𝐿 ⋅ 𝐹𝑅 ≤ 𝑀𝑑𝐿 ⋅ 𝑀𝑑𝑅 = 𝑀𝑑

• If 𝐹 = 𝐹𝐿 + 𝐹𝑅, then 𝐹 ≤ 𝐹𝐿 + 𝐹𝑅 ≤ 𝑀𝑑𝐿 + 𝑀𝑑𝑅 ≤ 𝑀𝑑𝐿 ⋅ 𝑀𝑑𝑅 = 𝑀𝑑

21

Evaluating an arithmetic formula

• Proof sketch: Evaluate the nodes one by one, starting at the leaves

• 𝑀 ≤ 2𝑛 and 𝑑 ≤ 𝑛, so each node outputs 𝑦 such that 𝑦 ≤ 𝑀𝑑 ≤ 2𝑛2

• In other words, 𝑦 is an 𝑂 𝑛2 -bit integer

• There are 𝑂 𝑛 nodes, and we can do arithmetic in polynomial time

22

Lemma: EQUALS-ZERO ∈ P

Identity testing

• Problem: Given an arithmetic formula 𝐹, possibly including one or more

variables, determine whether 𝐹 ≡ 0

• Example: 2𝑥 + 1 ⋅ 3 − 6𝑥 − 3 ≡ 0

• Example: 𝑥 + 1 ⋅ 𝑥 + 2 + 4 ≢ 0

• As a language:

IDENTICALLY-ZERO = 𝐹 ∶ 𝐹 is an arithmetic formula and 𝐹 ≡ 0

23

Complexity of identity testing

• IDENTICALLY-ZERO = 𝐹 ∶ 𝐹 is an arithmetic formula and 𝐹 ≡ 0

• High school algorithm: Expand 𝐹 into monomials, then simplify by

canceling like terms

24

What is the time complexity of this algorithm?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑂 1

A: poly 𝑛

D: ∞

B: 2Ω 𝑛

Identity testing example

• Given: 𝐹 = (𝑎𝑏 + 𝑎 − 𝑏 − 1) ⋅ (𝑐𝑑 − 𝑎𝑑 + 𝑎 − 𝑐) ⋅ 𝑏 − 𝑒 + (𝑏𝑑 + 𝑑 − 𝑏 − 1) ⋅ (𝑏𝑐 + 𝑒𝑎 − 𝑎𝑏 − 𝑐𝑒) ⋅ 1 − 𝑎

• Expand:

𝐹 ≡ 𝑎𝑏2𝑐𝑑 − 𝑒𝑎𝑏𝑐𝑑 − 𝑎2𝑏2𝑑 + 𝑒𝑎2𝑏𝑑 − 𝑎𝑏2𝑐 + 𝑒𝑎𝑏𝑐 + 𝑎2𝑏2 − 𝑒𝑎2𝑏 + 𝑎𝑐𝑑𝑏 − 𝑒𝑎𝑐𝑑 − 𝑎2𝑑𝑏 + 𝑒𝑎2𝑑 − 𝑎𝑐𝑏

+ 𝑒𝑎𝑐 + 𝑎2𝑏 − 𝑒𝑎2 − 𝑏2𝑐𝑑 + 𝑒𝑏𝑐𝑑 + 𝑏2𝑑𝑎 − 𝑒𝑏𝑑𝑎 + 𝑏2𝑐𝑏 − 𝑒𝑏𝑐 − 𝑏2𝑎 + 𝑒𝑏𝑎 − 𝑐𝑑𝑏 + 𝑒𝑐𝑑 + 𝑑𝑎𝑏 − 𝑒𝑑𝑎 + 𝑐𝑏

− 𝑒𝑐 − 𝑎𝑏 + 𝑒𝑎 − 𝑒𝑎2𝑏𝑑 + 𝑒𝑎𝑏𝑑 + 𝑒𝑎2𝑏 − 𝑒𝑎𝑏 − 𝑒𝑎2𝑑 + 𝑒𝑎𝑑 + 𝑒𝑎2 − 𝑒𝑎 + 𝑎2𝑏2𝑑 − 𝑎𝑏2𝑑 − 𝑎2𝑏2 + 𝑎𝑏2

+ 𝑎2𝑑𝑏 − 𝑎𝑑𝑏 − 𝑎2𝑏 + 𝑎𝑏 − 𝑏2𝑐𝑑𝑎 + 𝑏2𝑐𝑑 + 𝑏𝑐𝑑𝑒𝑎 − 𝑏𝑐𝑑𝑒 + 𝑏2𝑐𝑎 − 𝑏2𝑐 − 𝑏𝑐𝑒𝑎 + 𝑏𝑐𝑒 − 𝑐𝑑𝑎𝑏 + 𝑐𝑑𝑏 + 𝑐𝑎𝑏

− 𝑐𝑏 + 𝑐𝑑𝑒𝑎 − 𝑐𝑑𝑒 − 𝑐𝑒𝑎 + 𝑐𝑒

• Everything cancels out: 𝐹 ≡ 0

25

Complexity of identity testing

• Expanding 𝐹 takes 2Ω 𝑛 time in some cases

• E.g., 𝐹 = 𝑥 + 𝑦 ⋅ 𝑥 + 𝑦 ⋅ 𝑥 + 𝑦 ⋯ 𝑥 + 𝑦

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Randomized computation
	Slide 4: Randomized Turing machines
	Slide 5: Randomized Turing machines
	Slide 6: Acceptance probability
	Slide 7: Randomized polynomial time, attempt #1
	Slide 8: Example: CLIQUE
	Slide 9: How to interpret NP
	Slide 10: How to interpret NP
	Slide 11: Which problems can be solved through computation?
	Slide 12: Error probability
	Slide 13: The complexity class BPP
	Slide 14: Amplification lemma
	Slide 15: Proof of the amplification lemma (1 slide)
	Slide 16: BPP as a model of tractability
	Slide 17: Example: High school algebra
	Slide 18: Arithmetic formulas
	Slide 19: Evaluating an arithmetic formula
	Slide 20: Evaluating an arithmetic formula
	Slide 21: Numbers are not getting terribly big
	Slide 22: Evaluating an arithmetic formula
	Slide 23: Identity testing
	Slide 24: Complexity of identity testing
	Slide 25: Identity testing example
	Slide 26: Complexity of identity testing

