CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Which problems
can be solved

through computation?

Randomized computation $3

* Researchers often use randomness to answer questions

* Random sampling for opinion polls

 Randomized controlled trials in science/medicine

* What if we incorporate this ability into our computational model?

Randomized Turing machines

Input tape — L 1 1 1 0 L L

Randomness tape =

Randomized Turing machines g

* Let T:N — N be a function (time bound)

* Definition: A randomized time-T Turing machine is a two-tape Turing machine

M such that for everyn € N, every w € {0, 1}, and every x € {0, 1}7™ if we

initialize M with w on tape 1 and x on tape 2, then it halts within T (n) steps
* Interpretation: w is the input and x is the coin tosses

* (Giving M more than T'(n) random bits would be pointless)

Acceptance probability “ai

* Let M be a randomized Turing machine and let w € {0, 1}*

* Torun M on w, we select x € {0, 1}T(") uniformly at random and

initialize M with w on tape 1 and x on tape 2

[{x: M accepts w when tape 2 is initialized with x}|

Pr[M accepts w] = 2T (1)

Randomized polynomial time, attempt #1

e letY € {0,1}"

* Definition: Y € NP if there exists a randomized polynomial-time
Turing machine M such that for every w € {0, 1}":
* Ifw €Y, then Pr[M accepts w] # 0

“Nondeterministic
* Ifw ¢ Y, then Pr[M accepts w] = 0 Turing machine”

* “Nondeterministic Polynomial-time”

Example: CLIQUE

* CLIQUE = {(G, k) : G has a k-clique}
* Claim: CLIQUE € NP

* Proof:

1. Pick a random subset of the vertices
2. Checkifitisa k-clique

3. Ifyes, accept; if no, reject.

How to interpret NP

* Can we conclude that CLIQUE is tractable?
* No!
* Even if G has a k-clique, Pr[accept]| might be extremely small

* When the algorithm rejects, it gives us practically no information

How to interpret NP

* NP is not a good model of tractability
* NP is an extremely useful conceptual tool...

e More on this later

10

Which problems
can be solved

through computation?

Error probability 3y

* Let M be a randomized time-T Turing machine forsome T: N — N
eletY € {0,1}* andlet$ € [0, 1]

* We say M decides Y with error probability § if for every w € {0, 1}":

* Ifw €Y, then Pr[M acceptsw] >1—9§

* Ifw ¢ Y, then Pr[M acceptsw] < §

12

The complexity class BPP s 3

* Definition: BPP is the set of languages Y € {0, 1}* such that there
exists a randomized polynomial-time Turing machine that decides Y

with error probability 1/3

* “Bounded-error Probabilistic Polynomial-time”

13

Amplification lemma

* Suppose a language Y € {0, 1}* can be decided by a time-T Turing
machine M, with error probability 1/3

* Let k € N be any constant

Amplification Lemma: There exists a randomized time-7" Turing machine

that decides Y with error probability 1/2”k, where T'(n) = O(T(n) : nk).

* Asn — oo, the error probability goes to 0 extremely rapidly!

14

Proof of the am=!ifinatinn lnmmmnns 14 ~lida)

If M, uses R(n) many random bits, then how many random bits
does the new TM use?

* For simplicity, assume th<A:R(n) ok ><B:R(n),nk >1
* Forw ¢ Y, we merely ass< >< >
C: R(n)* D: Not enough information

Givenw € {0, 1}": Respond at PollEv.com/whoza or text “whoza” to 22333

1) Fori=1to nk. > Time complexity:

0(T(n) - n*
a) Simulate M, on w using fresh random bits. If it rejects, reject. (TG -)

2) Accept.

* Ifw €Y, then Pr[M accepts w] =1

* Ifw &Y, then Pr[M accepts w] < (1/2)"k = 1/2”k

15

BPP as a model of tractability

e Because of the amplification lemma, languages in BPP should be
considered “tractable”

2100

* A mistake that occurs with probability 1/ can be safely ignored

* (Even if you use a deterministic algorithm, can you really be 100% certain

that the computation was carried out correctly?)

* Next: An interesting example of a language in BPP

16

Example: High school algebra

« “Expand and simplify: (x + 1) - (x — 1)”

\ J
Y

This type of expression is

called an arithmetic formula

* How difficult is this type of exercise?

17

Compare to
Boolean formulas

Arithmetic formulas

- Definition: A k-variate arithmetic formula is a rooted binary tree

e Each internal node is labeled with + or X

* Each leaf is labeled with a constant ¢ € Z or a variable among x4, ..., xj
e |t computes F: R* - R °

* E.g., F(x{,x5) = (X1 — x3) - (X1 + x5) e °
« Warm-up: Let’s think about the case of @ ° @ Q

zero variables e Q

18

Evaluating an arithmetic formula

* Problem: Given an arithmetic formula with zero variables, determine
whether it evaluates to 0
 Example: (2+3):-(1—-2)+5=0
 Example: (2+3):-(2—1)+5+#0

* As a language:

EQUALS-ZERO = {(F) : F is a 0-variate arithmetic formula and F = 0}

19

Evaluating an arithmetic formula

Lemma: EQUALS-ZERO € P

e Proof idea: Grade-school arithmetic

* Possible concern: How big are the numbers we are working with?

20

Numbers are not getting terribly big

* Let ¢4, Cy, ..., c4 be the constants at the leaves of the formula F
* Let M = max(|cq], |ca], ..., leql, 2)

e Claim: |F| < M2. Proof by induction:
e Base case: d = 1: trivial «
* If F = F, - Fp, then |F| = |F,| - |Fr| < M% - M9 = M

e If F = F, + Fy, then |F| < |F,| + |Fp| < M9 + M9 < M9 . M9R = M“

21

Evaluating an arithmetic formula

Lemma: EQUALS-ZERO € P

* Proof sketch: Evaluate the nodes one by one, starting at the leaves

« M < 2" and d < n, so each node outputs y such that |y| < M% < 2n°
* In other words, y is an 0(n?)-bit integer

* There are O(n) nodes, and we can do arithmetic in polynomial time «

22

|dentity testing

* Problem: Given an arithmetic formula F, possibly including one or more
variables, determine whether F = 0
 Example: (2x+1)-3—6x—3 =0

 Example:(x+1) - (x+2)4+4 %0

* As a language:

IDENTICALLY-ZERO = {(F) : F is an arithmetic formula and F = 0}

23

Complexity of identity testing

« IDENTICALLY-ZERO = {(F) : F is an arithmetic formula and F = 0}

* High school algorithm: Expand F into monomials, then simplify by

< What is the time complexity of this algorithm? >
< A: poly(n) >< B: 28 >
< c:0(1) >< D: oo >

Respond at PollEv.com/whoza or text “whoza” to 22333

canceling like terms

24

|[dentity testing example

« Given:F=(ab+a—-—b—-1)-(cd—ad+a—-c)- (b—e)+(bd+d—-b—-1)-(bc+ea—ab—ce)-(1—a)

e Expand:
F = ab?cd — eabcd — a?b?*d + ea’bd — ab?c + eabc + a*b? — ea?b + acdb — eacd — a?db + ea?d — ach
+ eac + a?b — ea® — b%cd + ebcd + b?da — ebda + b*cb — ebc — b?a + eba — cdb + ecd + dab — eda + cb
—ec—ab + ea — ea’bd + eabd + ea’b — eab — ea®d + ead + ea® — ea + a*b?*d — ab*d — a’b? + ab?
+ a?db — adb — a?b + ab — b*cda + b%*cd + bcdea — bede + b*ca — b*c — bcea + bce — cdab + cdb + cab

— cb + cdea — cde — cea + ce

e Everything cancelsout: F = 0

25

Complexity of identity testing

* Expanding F takes 22 time in some cases

cEg, F=@+y) - (x+y) - (x+y)(x+y)

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: Randomized computation
	Slide 4: Randomized Turing machines
	Slide 5: Randomized Turing machines
	Slide 6: Acceptance probability
	Slide 7: Randomized polynomial time, attempt #1
	Slide 8: Example: CLIQUE
	Slide 9: How to interpret NP
	Slide 10: How to interpret NP
	Slide 11: Which problems can be solved through computation?
	Slide 12: Error probability
	Slide 13: The complexity class BPP
	Slide 14: Amplification lemma
	Slide 15: Proof of the amplification lemma (1 slide)
	Slide 16: BPP as a model of tractability
	Slide 17: Example: High school algebra
	Slide 18: Arithmetic formulas
	Slide 19: Evaluating an arithmetic formula
	Slide 20: Evaluating an arithmetic formula
	Slide 21: Numbers are not getting terribly big
	Slide 22: Evaluating an arithmetic formula
	Slide 23: Identity testing
	Slide 24: Complexity of identity testing
	Slide 25: Identity testing example
	Slide 26: Complexity of identity testing

