CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Boolean formulas

* Definition: An n-variate Boolean formula is a rooted binary tree

e Each internal node is labeled with a binary logical operation

* Each leaf is labeled with 0, 1, or a variable among x4, ..., X,

* It computes f:{0,1}" — {0, 1} @

—

*E.g., fxy,x5,%x3) = (X1 ANxy) D (xq Ai3)

Boolean circuits %
0

1
A Boolean circuit is like a Boolean Sj
0

¢ 8

formula, except that we permit vertices

to have multiple outgoing wires

Boolean circuits: Rigorous definition

* Definition: An n-input m-output circuit is a directed acyclic graph
* We refer to the edges as “wires”

* Two types of nodes:

* Each “gate” has two incoming edges and is labeled with a binary logical operation

* Otherwise, a node has zero incoming edges and is labeled with 0, 1, or a variable among x4, ..., x,,

/A {]

 m of the nodes are additionally labeled as “output 1”, “output 27, ..., “output m”

Boolean circuits: Rigorous definition

* Each node g computes a function g: {0, 1} — {0, 1} defined inductively:
* If g is labeled x;, then g(x) = the i-th bit of x
* If g is labeled 0, then g(x) =0
* If gislabeled 1,then g(x) =1

* If g is labeled op and its incoming wires come from f and h, then g(x) = f(x) op h(x)

Boolean circuits

* Let the output nodes be g4, ..., gm

* As a whole, the circuit computes C: {0, 1}"* — {0, 1} defined by

C(x) = (91(), e, G (x))

Equivalent: Boolean straight-line programs

Circuit

[)

* XX DX
* X5 <X D3

C x6(—x4/\x2

x8 «— Xy /\xs
C x9<—x6Vx7
C x10<—x9Vx8

* Return x4

Boolean Straight-Line Program

Each line: Combine
two variables, store in
new variable
“Return” at end

No loops

No “if” statements

No branching

Circuit complexity

* The size of a circuit is the total number of gates

e How much “work” does the circuit do?
e Let f:{0,1}"* - {0,1}"™

* The circuit complexity of f is the size of the smallest circuit that

computes f

* How much work is required to compute f?

Circuit complexity example 1

elet f(x) =x; VX,V Vi,

e Circuit complexity: ©(n)

Circuit complexity example 2

* Define f:{0,1}" — {0,1} by

f(x) =1 & xisapalindrome

X1 Xg X2 X, X3 Xg Xg4 @ Xs

e Circuit complexity: O(n) <

What is the circuit complexity of f?

< A: O(n2)

>< B: 0(1)

< C: O(n)

>< D: O(2M)

D
>
D

Respond at PollEv.com/whoza or text “whoza” to 22333

10

The power of Boolean circuits

* Recall: Some languages cannot be decided by algorithms

* Are there functions that cannot be computed by circuits?

Theorem: For every f: {0, 1}"* - {0, 1}, there

exists a Boolean formula that computes f.

11

Theorem: For every f:{0,1}" — {0, 1}, there

exists a Boolean formula that computes f.

* Proof (1 slide): For each z € {0, 1}, construct T, that is satisfied only by z

° Eg, T010 — El N X9 /\EB

Then f(x) = \/ T,(x)
zef~1(1)

12

DNF formulas

* Definition: A literal is a variable or its negation (x; or X;)

* Definition: A term is a conjunction of literals (AND of literals). Example:
TOlO —_ .7?1 /\Xz /\.7?3
* Definition: A disjunctive normal form (DNF) formula is a disjunction of
terms (OR of ANDs of literals). Example:

fx) = (g Axy Ax3) V(X1 Ady Axg)

13

Every function has a DNF formula

 Let f:{0,1}" — {0, 1} be any function

Theorem: There is a DNF formula that computes f,

with at most 2™ terms and n literals per term

* Proof: For each z € {0, 1}", construct a term T, that is satisfied only by z

Then f(x) = \/ T,(x)
zef~1(1)

14

CNF formulas

* Definition: A clause is a disjunction of literals (OR of literals). Example:
C — fl V xZ V f3
* Definition: A conjunctive normal form (CNF) formula is a conjunction of
clauses (AND of ORs of literals). Example:

flx) = (% Vay V) A(xy ViyVxg)

15

Every function has a CNF formula

* Let f:{0,1}" — {0, 1} be any function

Theorem: There is a CNF formula that computes f,

with at most 2" clauses and n literals per clause

* Proof: For each z € {0, 1}", construct a clause C, that is violated only by z

° Eg, TO]_O = X1 VvV .fz \% X3

Then f(x) = /\ C,(x)
zef~1(0)

16

Multi-output functions

Corollary: For every f:{0,1}" — {0, 1}, there exists a

circuit of size O(m - n - 2™) that computes f

* Proof: Write f(x) = (f1 (x), ...,fm(x))
* Each f; can be computed by a circuit of size O(n - 2™) (DNF/CNF)

e Combine those m circuits into one

17

Polynomial-size circuits

* Every function has a circuit &
* But the circuit we constructed has exponential size &

* Next: Polynomial-time algorithm = polynomial-size circuits

18

Circuit complexity of a binary language

e letY € {0,1}"

* For eachn € N, we define Y,;: {0, 1}" — {0, 1} by the rule

1 ifweYy
Y"(W)_{o ifw ¢ Y

* Definition: The circuit complexity of Y is the function S: N — N defined by

S(n) = the size of the smallest circuit that computes Y,

* Note: Each circuit only handles a single input length! Different from TMs

19

Turing machines vs. circuits

* Let M be a Turing machine that decides a language Y

e Let T(n) be M’s time complexity; let S(n) be M’s space complexity

Theorem: The circuit complexity of Y is O(T(n) - S(n)).

* Proof (next 6 slides) is based on computation histories

20

Locality of computation

* Let C be a configuration of the Turing machine M

* We can write C = ¢4¢, ...cp forsome ¢y, ...,cp € 2 U

For simplicity,
assume the

head is not at

beginning/end

* Then NEXT(C) = c¢;cp ...c, for some ¢, ...,c; EZ U Q
JoI@®

 Exercise 10a: If 2 < i < ¥ — 2, then

/
[

the third symbol of NEXT(LI ¢;_;c;c;s1¢;1») ifc;_1 EQorc; €EQorc;y 1 €Q
C; otherwise

21

Encoding configurations in binary

* Let C be a configuration of a TM M, say C = uquU, ... UpqU1V5 ... Uy

* Each symbol/state b € £ U Q can be encoded in binary as (b) € {0, 1}"

for somer = 0(1)

* We define (C) = (ug uz) - (ue \gHv1) - (V)

22

TM = Circuit

* There is a circuit Cy, that computes (c;)

given (c;_1), {¢;), (Ci+1), (Ciy2)

| |
(Ci-1) (Ci) (Civ1) (Cit2)

TM = Circuit

* There is a circuit C), that computes (c;)

given <Ci—1>i (Ci>l <Ci+1>l <Ci+2>

(c;)

1] I 1
(Ci-1) () (Ci+1) (Ciz2)

TM = Circuit

* There is a circuit C), that computes (c;) A

given (Ci_]_), (Ci), (Ci+1>, (Ci+2> (cim1) (¢} {cip1) (Cig2)

(ci)

* Now let’s combine many copies of Cy, in parallel:

(NEXT(C))
AN

r B
(c1) (cz) (c3) (ca) {cs) (cg) ({c7)

(U) <C1> (CZ) (C3) <C4> <C5) (C6> (C7) (U) (U)

_)
N

(C)

TM = Circuit

e Size: O(S(n) : T(n))

* Assume WLOG:
* (0) =0"and (1) = 10"*
* M halts in starting cell
« NEXT(C) =CifCisa

halting configuration

* (CIaccept) =1" (L)

Encoding of final configuration of M on w
N

Yo (w)

(L) Uy {qo) (L) (wo (wo (w0 (u) (u)

141 W» W3

T(n)

(uy (U

* (CIreject) =017 e

0(S(n))

26

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Boolean formulas
	Slide 3: Boolean circuits
	Slide 4: Boolean circuits: Rigorous definition
	Slide 5: Boolean circuits: Rigorous definition
	Slide 6: Boolean circuits
	Slide 7: Equivalent: Boolean straight-line programs
	Slide 8: Circuit complexity
	Slide 9: Circuit complexity example 1
	Slide 10: Circuit complexity example 2
	Slide 11: The power of Boolean circuits
	Slide 12
	Slide 13: DNF formulas
	Slide 14: Every function has a DNF formula
	Slide 15: CNF formulas
	Slide 16: Every function has a CNF formula
	Slide 17: Multi-output functions
	Slide 18: Polynomial-size circuits
	Slide 19: Circuit complexity of a binary language
	Slide 20: Turing machines vs. circuits
	Slide 21: Locality of computation
	Slide 22: Encoding configurations in binary
	Slide 23: TM implies Circuit
	Slide 24: TM implies Circuit
	Slide 25: TM implies Circuit
	Slide 26: TM implies Circuit

