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Boolean formulas

• Definition: An 𝑛-variate Boolean formula is a rooted binary tree

• Each internal node is labeled with a binary logical operation

• Each leaf is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• It computes 𝑓: 0, 1 𝑛 → 0, 1

• E.g., 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1 ∧ 𝑥2 ⊕ 𝑥1 ∧ ҧ𝑥3
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Boolean circuits

• A Boolean circuit is like a Boolean 

formula, except that we permit vertices 

to have multiple outgoing wires
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Boolean circuits: Rigorous definition

• Definition: An 𝑛-input 𝑚-output circuit is a directed acyclic graph

• We refer to the edges as “wires”

• Two types of nodes:

• Each “gate” has two incoming edges and is labeled with a binary logical operation

• Otherwise, a node has zero incoming edges and is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• 𝑚 of the nodes are additionally labeled as “output 1”, “output 2”, …, “output 𝑚”
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Boolean circuits: Rigorous definition

• Each node 𝑔 computes a function 𝑔: {0, 1}𝑛 → {0, 1} defined inductively:

• If 𝑔 is labeled 𝑥𝑖, then 𝑔 𝑥 = the 𝑖-th bit of 𝑥

• If 𝑔 is labeled 0, then 𝑔 𝑥 ≡ 0

• If 𝑔 is labeled 1, then 𝑔 𝑥 ≡ 1

• If 𝑔 is labeled op and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥  op ℎ 𝑥
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Boolean circuits

• Let the output nodes be 𝑔1, … , 𝑔𝑚

• As a whole, the circuit computes 𝐶: 0, 1 𝑛 → 0, 1 𝑚 defined by

𝐶 𝑥 = 𝑔1 𝑥 , … , 𝑔𝑚 𝑥
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Equivalent: Boolean straight-line programs
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• 𝑥4 ← 𝑥1 ⊕ 𝑥2

• 𝑥5 ← 𝑥2 ⊕ 𝑥3

• 𝑥6 ← 𝑥4 ∧ 𝑥2

• 𝑥7 ← 𝑥4 ∧ 𝑥5

• 𝑥8 ← 𝑥2 ∧ 𝑥5

• 𝑥9 ← 𝑥6 ∨ 𝑥7

• 𝑥10 ← 𝑥9 ∨ 𝑥8

• Return 𝑥10

Boolean Straight-Line Program

• Each line: Combine 

two variables, store in 

new variable

• “Return” at end

• No loops

• No “if” statements

• No branching



Circuit complexity

• The size of a circuit is the total number of gates

• How much “work” does the circuit do?

• Let 𝑓: {0, 1}𝑛 → {0, 1}𝑚

• The circuit complexity of 𝑓 is the size of the smallest circuit that 

computes 𝑓

• How much work is required to compute 𝑓?
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Circuit complexity example 1

• Let 𝑓 𝑥 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛

• Circuit complexity: Θ 𝑛
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Circuit complexity example 2

• Define 𝑓: 0, 1 𝑛 → {0, 1} by

𝑓 𝑥 = 1 ⇔ 𝑥 is a palindrome 

• Circuit complexity: Θ 𝑛
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The power of Boolean circuits

• Recall: Some languages cannot be decided by algorithms

• Are there functions that cannot be computed by circuits?
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Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}, there 

exists a Boolean formula that computes 𝑓.



• Proof (1 slide): For each 𝑧 ∈ 0, 1 𝑛, construct 𝑇𝑧 that is satisfied only by 𝑧

• E.g., 𝑇010 = 𝑥1 ∧ 𝑥2 ∧ 𝑥3

Then 𝑓 𝑥 = ሧ

𝑧∈𝑓−1 1

𝑇𝑧 𝑥
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Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}, there 

exists a Boolean formula that computes 𝑓.



DNF formulas

• Definition: A literal is a variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• Definition: A term is a conjunction of literals (AND of literals). Example:

𝑇010 = ҧ𝑥1 ∧ 𝑥2 ∧ ҧ𝑥3

• Definition: A disjunctive normal form (DNF) formula is a disjunction of 

terms (OR of ANDs of literals). Example:

𝑓 𝑥 = ҧ𝑥1 ∧ 𝑥2 ∧ ҧ𝑥3 ∨ 𝑥1 ∧ ҧ𝑥2 ∧ 𝑥3
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Every function has a DNF formula

• Let 𝑓: 0, 1 𝑛 → 0, 1  be any function

• Proof: For each 𝑧 ∈ 0, 1 𝑛, construct a term 𝑇𝑧 that is satisfied only by 𝑧

Then 𝑓 𝑥 = ሧ

𝑧∈𝑓−1 1

𝑇𝑧 𝑥
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Theorem: There is a DNF formula that computes 𝑓, 

with at most 2𝑛 terms and 𝑛 literals per term



CNF formulas

• Definition: A clause is a disjunction of literals (OR of literals). Example:

𝐶 = ҧ𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3

• Definition: A conjunctive normal form (CNF) formula is a conjunction of 

clauses (AND of ORs of literals). Example:

𝑓 𝑥 = ҧ𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3
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Every function has a CNF formula

• Let 𝑓: 0, 1 𝑛 → 0, 1  be any function

• Proof: For each 𝑧 ∈ 0, 1 𝑛, construct a clause 𝐶𝑧 that is violated only by 𝑧

• E.g., 𝑇010 = 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3

Then 𝑓 𝑥 = ሥ

𝑧∈𝑓−1 0

𝐶𝑧 𝑥
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Theorem: There is a CNF formula that computes 𝑓, 

with at most 2𝑛 clauses and 𝑛 literals per clause



Multi-output functions

• Proof: Write 𝑓 𝑥 = 𝑓1 𝑥 , … , 𝑓𝑚 𝑥

• Each 𝑓𝑖 can be computed by a circuit of size 𝑂 𝑛 ⋅ 2𝑛  (DNF/CNF)

• Combine those 𝑚 circuits into one
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Corollary: For every 𝑓: 0, 1 𝑛 → 0, 1 𝑚, there exists a 

circuit of size 𝑂 𝑚 ⋅ 𝑛 ⋅ 2𝑛  that computes 𝑓



Polynomial-size circuits

• Every function has a circuit 

• But the circuit we constructed has exponential size 

• Next: Polynomial-time algorithm ⇒ polynomial-size circuits
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Circuit complexity of a binary language

• Let 𝑌 ⊆ 0, 1 ∗

• For each 𝑛 ∈ ℕ, we define 𝑌𝑛: {0, 1}𝑛 → {0, 1} by the rule

𝑌𝑛 𝑤 = ቊ
1 if 𝑤 ∈ 𝑌
0 if 𝑤 ∉ 𝑌

• Definition: The circuit complexity of 𝑌 is the function 𝑆: ℕ → ℕ defined by 

𝑆 𝑛 = the size of the smallest circuit that computes 𝑌𝑛

• Note: Each circuit only handles a single input length! Different from TMs
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Turing machines vs. circuits

• Let 𝑀 be a Turing machine that decides a language 𝑌

• Let 𝑇 𝑛  be 𝑀’s time complexity; let 𝑆 𝑛  be 𝑀’s space complexity

• Proof (next 6 slides) is based on computation histories
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Theorem: The circuit complexity of 𝑌 is 𝑂 𝑇 𝑛 ⋅ 𝑆 𝑛 .



Locality of computation

• Let 𝐶 be a configuration of the Turing machine 𝑀

• We can write 𝐶 = 𝑐1𝑐2 … 𝑐ℓ for some 𝑐1, … , 𝑐ℓ ∈ Σ ∪ 𝑄

• Then NEXT 𝐶 = 𝑐1
′ 𝑐2

′ … 𝑐ℓ
′  for some 𝑐1

′ , … , 𝑐ℓ
′ ∈ Σ ∪ 𝑄

• Exercise 10a: If 2 ≤ 𝑖 ≤ ℓ − 2, then

𝑐𝑖
′ = ቊ

the third symbol of NEXT ⊔ 𝑐𝑖−1𝑐𝑖𝑐𝑖+1𝑐𝑖+2  if 𝑐𝑖−1 ∈ 𝑄 or 𝑐𝑖 ∈ 𝑄 or 𝑐𝑖+1 ∈ 𝑄 
𝑐𝑖 otherwise 
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Encoding configurations in binary

• Let 𝐶 be a configuration of a TM 𝑀, say 𝐶 = 𝑢1𝑢2 … 𝑢𝑘𝑞𝑣1𝑣2 … 𝑣𝑚

• Each symbol/state 𝑏 ∈ Σ ∪ 𝑄 can be encoded in binary as 𝑏 ∈ 0, 1 𝑟 

for some 𝑟 = 𝑂 1

• We define 𝐶 = 𝑢1 𝑢2 ⋯ 𝑢𝑘 𝑞 𝑣1 ⋯ 𝑣𝑚
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TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2
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TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2
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TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2

• Now let’s combine many copies of 𝐶𝑀 in parallel:
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TM ⇒ Circuit

• Size: 𝑂 𝑆 𝑛 ⋅ 𝑇 𝑛

• Assume WLOG:

• 0 = 0𝑟 and 1 = 10𝑟−1

• 𝑀 halts in starting cell

• NEXT 𝐶 = 𝐶 if 𝐶 is a 

halting configuration

• 𝑞accept = 1𝑟

• 𝑞reject = 01𝑟−1
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Encoding of final configuration of 𝑀 on 𝑤
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