
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Boolean formulas

• Definition: An 𝑛-variate Boolean formula is a rooted binary tree

• Each internal node is labeled with a binary logical operation

• Each leaf is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• It computes 𝑓: 0, 1 𝑛 → 0, 1

• E.g., 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1 ∧ 𝑥2 ⊕ 𝑥1 ∧ ҧ𝑥3

2

⊕

∧

𝑥3𝑥1

∧

𝑥1 𝑥2

¬

Boolean circuits

• A Boolean circuit is like a Boolean

formula, except that we permit vertices

to have multiple outgoing wires

3

⊕

𝑥1

𝑥2

𝑥3

⊕

∧

∧

∧

∨

∨

1

1
0

11
11

11 11

11 00

11

00

11
11

00
00

00 00

11

Boolean circuits: Rigorous definition

• Definition: An 𝑛-input 𝑚-output circuit is a directed acyclic graph

• We refer to the edges as “wires”

• Two types of nodes:

• Each “gate” has two incoming edges and is labeled with a binary logical operation

• Otherwise, a node has zero incoming edges and is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• 𝑚 of the nodes are additionally labeled as “output 1”, “output 2”, …, “output 𝑚”

4

Boolean circuits: Rigorous definition

• Each node 𝑔 computes a function 𝑔: {0, 1}𝑛 → {0, 1} defined inductively:

• If 𝑔 is labeled 𝑥𝑖, then 𝑔 𝑥 = the 𝑖-th bit of 𝑥

• If 𝑔 is labeled 0, then 𝑔 𝑥 ≡ 0

• If 𝑔 is labeled 1, then 𝑔 𝑥 ≡ 1

• If 𝑔 is labeled op and its incoming wires come from 𝑓 and ℎ, then 𝑔 𝑥 = 𝑓 𝑥 op ℎ 𝑥

5

Boolean circuits

• Let the output nodes be 𝑔1, … , 𝑔𝑚

• As a whole, the circuit computes 𝐶: 0, 1 𝑛 → 0, 1 𝑚 defined by

𝐶 𝑥 = 𝑔1 𝑥 , … , 𝑔𝑚 𝑥

6

Equivalent: Boolean straight-line programs

7

Circuit

⊕

𝑥1

𝑥2
𝑥3

⊕

∧
∧

∧

∨

∨

𝑥4 𝑥5

𝑥6 𝑥7

𝑥8

𝑥9

𝑥10

• 𝑥4 ← 𝑥1 ⊕ 𝑥2

• 𝑥5 ← 𝑥2 ⊕ 𝑥3

• 𝑥6 ← 𝑥4 ∧ 𝑥2

• 𝑥7 ← 𝑥4 ∧ 𝑥5

• 𝑥8 ← 𝑥2 ∧ 𝑥5

• 𝑥9 ← 𝑥6 ∨ 𝑥7

• 𝑥10 ← 𝑥9 ∨ 𝑥8

• Return 𝑥10

Boolean Straight-Line Program

• Each line: Combine

two variables, store in

new variable

• “Return” at end

• No loops

• No “if” statements

• No branching

Circuit complexity

• The size of a circuit is the total number of gates

• How much “work” does the circuit do?

• Let 𝑓: {0, 1}𝑛 → {0, 1}𝑚

• The circuit complexity of 𝑓 is the size of the smallest circuit that

computes 𝑓

• How much work is required to compute 𝑓?

8

⊕

𝑥1 𝑥2 𝑥3

⊕

∧
∧

∧

∨

∨

Circuit complexity example 1

• Let 𝑓 𝑥 = 𝑥1 ∨ 𝑥2 ∨ ⋯ ∨ 𝑥𝑛

• Circuit complexity: Θ 𝑛

9

∨

∨ ∨

∨ ∨

𝑥1 𝑥2 𝑥7 𝑥8

∨∨

𝑥3 𝑥4 𝑥5 𝑥6

Circuit complexity example 2

• Define 𝑓: 0, 1 𝑛 → {0, 1} by

𝑓 𝑥 = 1 ⇔ 𝑥 is a palindrome

• Circuit complexity: Θ 𝑛

10

What is the circuit complexity of 𝑓?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: 𝑂 1A: Θ 𝑛2

D: Θ 2𝑛C: Θ 𝑛

∧

==

𝑥1 𝑥8 𝑥4 𝑥5𝑥2 𝑥7 𝑥3 𝑥6

== == ==

∧ ∧

The power of Boolean circuits

• Recall: Some languages cannot be decided by algorithms

• Are there functions that cannot be computed by circuits?

11

Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}, there

exists a Boolean formula that computes 𝑓.

• Proof (1 slide): For each 𝑧 ∈ 0, 1 𝑛, construct 𝑇𝑧 that is satisfied only by 𝑧

• E.g., 𝑇010 = 𝑥1 ∧ 𝑥2 ∧ 𝑥3

Then 𝑓 𝑥 = ሧ

𝑧∈𝑓−1 1

𝑇𝑧 𝑥

12

Theorem: For every 𝑓: {0, 1}𝑛 → {0, 1}, there

exists a Boolean formula that computes 𝑓.

DNF formulas

• Definition: A literal is a variable or its negation (𝑥𝑖 or ҧ𝑥𝑖)

• Definition: A term is a conjunction of literals (AND of literals). Example:

𝑇010 = ҧ𝑥1 ∧ 𝑥2 ∧ ҧ𝑥3

• Definition: A disjunctive normal form (DNF) formula is a disjunction of

terms (OR of ANDs of literals). Example:

𝑓 𝑥 = ҧ𝑥1 ∧ 𝑥2 ∧ ҧ𝑥3 ∨ 𝑥1 ∧ ҧ𝑥2 ∧ 𝑥3

13

Every function has a DNF formula

• Let 𝑓: 0, 1 𝑛 → 0, 1 be any function

• Proof: For each 𝑧 ∈ 0, 1 𝑛, construct a term 𝑇𝑧 that is satisfied only by 𝑧

Then 𝑓 𝑥 = ሧ

𝑧∈𝑓−1 1

𝑇𝑧 𝑥

14

Theorem: There is a DNF formula that computes 𝑓,

with at most 2𝑛 terms and 𝑛 literals per term

CNF formulas

• Definition: A clause is a disjunction of literals (OR of literals). Example:

𝐶 = ҧ𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3

• Definition: A conjunctive normal form (CNF) formula is a conjunction of

clauses (AND of ORs of literals). Example:

𝑓 𝑥 = ҧ𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3 ∧ 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3

15

Every function has a CNF formula

• Let 𝑓: 0, 1 𝑛 → 0, 1 be any function

• Proof: For each 𝑧 ∈ 0, 1 𝑛, construct a clause 𝐶𝑧 that is violated only by 𝑧

• E.g., 𝑇010 = 𝑥1 ∨ ҧ𝑥2 ∨ 𝑥3

Then 𝑓 𝑥 = ሥ

𝑧∈𝑓−1 0

𝐶𝑧 𝑥

16

Theorem: There is a CNF formula that computes 𝑓,

with at most 2𝑛 clauses and 𝑛 literals per clause

Multi-output functions

• Proof: Write 𝑓 𝑥 = 𝑓1 𝑥 , … , 𝑓𝑚 𝑥

• Each 𝑓𝑖 can be computed by a circuit of size 𝑂 𝑛 ⋅ 2𝑛 (DNF/CNF)

• Combine those 𝑚 circuits into one

17

Corollary: For every 𝑓: 0, 1 𝑛 → 0, 1 𝑚, there exists a

circuit of size 𝑂 𝑚 ⋅ 𝑛 ⋅ 2𝑛 that computes 𝑓

Polynomial-size circuits

• Every function has a circuit

• But the circuit we constructed has exponential size

• Next: Polynomial-time algorithm ⇒ polynomial-size circuits

18

Circuit complexity of a binary language

• Let 𝑌 ⊆ 0, 1 ∗

• For each 𝑛 ∈ ℕ, we define 𝑌𝑛: {0, 1}𝑛 → {0, 1} by the rule

𝑌𝑛 𝑤 = ቊ
1 if 𝑤 ∈ 𝑌
0 if 𝑤 ∉ 𝑌

• Definition: The circuit complexity of 𝑌 is the function 𝑆: ℕ → ℕ defined by

𝑆 𝑛 = the size of the smallest circuit that computes 𝑌𝑛

• Note: Each circuit only handles a single input length! Different from TMs
19

Turing machines vs. circuits

• Let 𝑀 be a Turing machine that decides a language 𝑌

• Let 𝑇 𝑛 be 𝑀’s time complexity; let 𝑆 𝑛 be 𝑀’s space complexity

• Proof (next 6 slides) is based on computation histories

20

Theorem: The circuit complexity of 𝑌 is 𝑂 𝑇 𝑛 ⋅ 𝑆 𝑛 .

Locality of computation

• Let 𝐶 be a configuration of the Turing machine 𝑀

• We can write 𝐶 = 𝑐1𝑐2 … 𝑐ℓ for some 𝑐1, … , 𝑐ℓ ∈ Σ ∪ 𝑄

• Then NEXT 𝐶 = 𝑐1
′ 𝑐2

′ … 𝑐ℓ
′ for some 𝑐1

′ , … , 𝑐ℓ
′ ∈ Σ ∪ 𝑄

• Exercise 10a: If 2 ≤ 𝑖 ≤ ℓ − 2, then

𝑐𝑖
′ = ቊ

the third symbol of NEXT ⊔ 𝑐𝑖−1𝑐𝑖𝑐𝑖+1𝑐𝑖+2 if 𝑐𝑖−1 ∈ 𝑄 or 𝑐𝑖 ∈ 𝑄 or 𝑐𝑖+1 ∈ 𝑄
𝑐𝑖 otherwise

21

For simplicity,
assume the

head is not at
beginning/end

Encoding configurations in binary

• Let 𝐶 be a configuration of a TM 𝑀, say 𝐶 = 𝑢1𝑢2 … 𝑢𝑘𝑞𝑣1𝑣2 … 𝑣𝑚

• Each symbol/state 𝑏 ∈ Σ ∪ 𝑄 can be encoded in binary as 𝑏 ∈ 0, 1 𝑟

for some 𝑟 = 𝑂 1

• We define 𝐶 = 𝑢1 𝑢2 ⋯ 𝑢𝑘 𝑞 𝑣1 ⋯ 𝑣𝑚

22

TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2

23

⟨𝑐𝑖−1⟩ ⟨𝑐𝑖⟩ ⟨𝑐𝑖+1⟩ 𝑐𝑖+2

⟨𝑐𝑖
′⟩

∧

∨

∨

⊕

⊕ ∨ ==

∨

∧∨∨

TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2

24

⟨𝑐𝑖−1⟩ ⟨𝑐𝑖⟩ ⟨𝑐𝑖+1⟩ 𝑐𝑖+2

⟨𝑐𝑖
′⟩

TM ⇒ Circuit

• There is a circuit 𝐶𝑀 that computes 𝑐𝑖
′

given 𝑐𝑖−1 , 𝑐𝑖 , 𝑐𝑖+1 , 𝑐𝑖+2

• Now let’s combine many copies of 𝐶𝑀 in parallel:

25

⟨𝑐𝑖−1⟩ ⟨𝑐𝑖⟩ ⟨𝑐𝑖+1⟩ 𝑐𝑖+2

⟨𝑐𝑖
′⟩

⊔ ⊔ ⊔𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7

𝑐1
′ 𝑐2

′ 𝑐3
′ 𝑐4

′ 𝑐5
′ 𝑐6

′ 𝑐7
′

𝐶

NEXT 𝐶

TM ⇒ Circuit

• Size: 𝑂 𝑆 𝑛 ⋅ 𝑇 𝑛

• Assume WLOG:

• 0 = 0𝑟 and 1 = 10𝑟−1

• 𝑀 halts in starting cell

• NEXT 𝐶 = 𝐶 if 𝐶 is a

halting configuration

• 𝑞accept = 1𝑟

• 𝑞reject = 01𝑟−1

26

⊔ ⊔ ⊔⊔ ⊔𝑞0 𝑤1 𝑤2 𝑤3 ⊔⊔ ⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

⊔⊔ ⊔⊔ ⊔⊔

𝑇(𝑛)

𝑂 𝑆 𝑛

𝑤1 𝑤2 𝑤3

0 0 0 0 0 0

𝑌𝑛 𝑤

Encoding of final configuration of 𝑀 on 𝑤

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Boolean formulas
	Slide 3: Boolean circuits
	Slide 4: Boolean circuits: Rigorous definition
	Slide 5: Boolean circuits: Rigorous definition
	Slide 6: Boolean circuits
	Slide 7: Equivalent: Boolean straight-line programs
	Slide 8: Circuit complexity
	Slide 9: Circuit complexity example 1
	Slide 10: Circuit complexity example 2
	Slide 11: The power of Boolean circuits
	Slide 12
	Slide 13: DNF formulas
	Slide 14: Every function has a DNF formula
	Slide 15: CNF formulas
	Slide 16: Every function has a CNF formula
	Slide 17: Multi-output functions
	Slide 18: Polynomial-size circuits
	Slide 19: Circuit complexity of a binary language
	Slide 20: Turing machines vs. circuits
	Slide 21: Locality of computation
	Slide 22: Encoding configurations in binary
	Slide 23: TM implies Circuit
	Slide 24: TM implies Circuit
	Slide 25: TM implies Circuit
	Slide 26: TM implies Circuit

