CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Deciding a language in time T

- Let $Y \subseteq \{0, 1\}^*$ and let $T: \mathbb{N} \to [0, \infty)$ be a function
- **Definition:** We say that Y can be decided in time T if there exists a one-tape Turing machine M such that
 - *M* decides *Y* , and
 - For every $n \in \mathbb{N}$ and every $w \in \{0,1\}^n$, the running time of M on w is at most T(n)

The Time Hierarchy Theorem

Time Hierarchy Theorem: For every* function $T: \mathbb{N} \to \mathbb{N}$ such that $T(n) \ge n$, there is a language $Y \in \text{TIME}(T^4)$ such that $Y \notin \text{TIME}(o(T))$.

- *assuming T is a "reasonable" time complexity bound. We will come back to this
- "TIME(o(T))" means the set of languages that are decidable in time o(T)
- "Given more time, we can solve more problems"

Proof of the Time Hierarchy Theorem

- Let $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$
- On the next four slides, we will prove:
 - $Y \in TIME(T^4)$
 - $Y \notin TIME(o(T))$

Proof that $Y \in TIME(T^4)$

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

• An algorithm that decides *Y*:

Given the input $\langle M \rangle$:

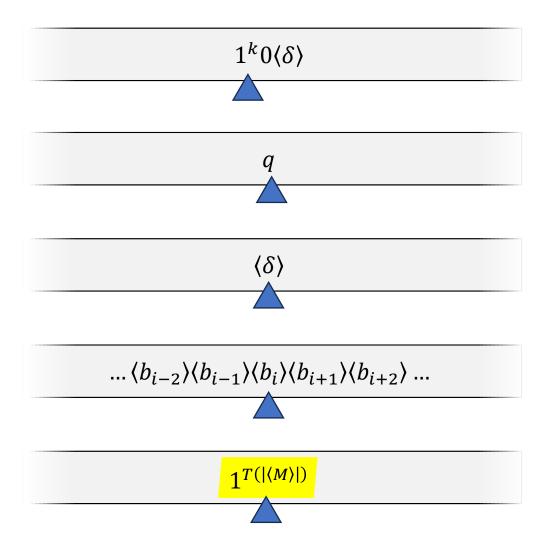
- 1. Simulate M on $\langle M \rangle$ for $T(|\langle M \rangle|)$ steps
- 2. If it rejects within that time, accept
- 3. Otherwise, reject

Time complexity in the TM model?

Proof that $Y \in \text{TIME}(T^4)$

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Let $n = |\langle M \rangle|$
- Each simulated step takes $\mathcal{O}(n)$ actual steps
- Total time complexity of multi-tape machine: $O(T(n) \cdot n)$
- After converting to a one-tape machine: $O(T(n)^2 \cdot n^2) = O(T(n)^4)$



Time-constructible functions

- **Definition:** A function $T: \mathbb{N} \to \mathbb{N}$ is time-constructible if there exists a multitape Turing machine M such that
 - Given input 1^n , M halts with $1^{T(n)}$ written on tape 2
 - M has time complexity O(T(n))
- Our proof that $Y \in TIME(T^4)$ works assuming T is time-constructible
- All "reasonable" time complexity bounds (e.g., 5n or n^2 or 2^n) are time-constructible

Time Hierarchy Theorem

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

Time Hierarchy Theorem: For every time-constructible $T: \mathbb{N} \to \mathbb{N}$, there is a language $Y \in \text{TIME}(T^4)$ such that $Y \notin \text{TIME}(o(T))$.

- We showed $Y \in TIME(T^4)$
- We still need to show $Y \notin TIME(o(T))$

Proof that $Y \notin TIME(o(T))$ $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Let R be a TM that decides Y, with time complexity $T': \mathbb{N} \to \mathbb{N}$
- Add dummy states!
- For infinitely many values of n, there exists a TM R_n such that R_n decides Y, R_n has time complexity T', and $|\langle R_n \rangle| = n$
- Each R_n must reject $\langle R_n \rangle$ after more than T(n) steps by diagonalization
- Therefore, T'(n) > T(n) for infinitely many values of n, hence T' is not o(T)

Robustness of P, revisited

- Let $Y \subseteq \{0, 1\}^*$. If $Y \notin P$, then Y cannot be decided by...
 - A poly-time one-tape Turing machine
 - A poly-time multi-tape Turing machine
- OBJECTION: "Practical computers are very different from Turing machines!"
- RESPONSE: The "word RAM" model

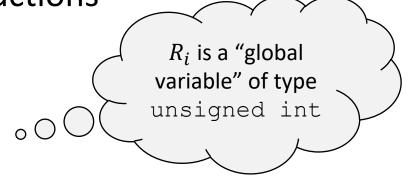
Word RAM model (RAM = Random Access Machine)

• (This model will not be on homework exercises or exams)

A word RAM program consists of a list of instructions

Available instructions include:

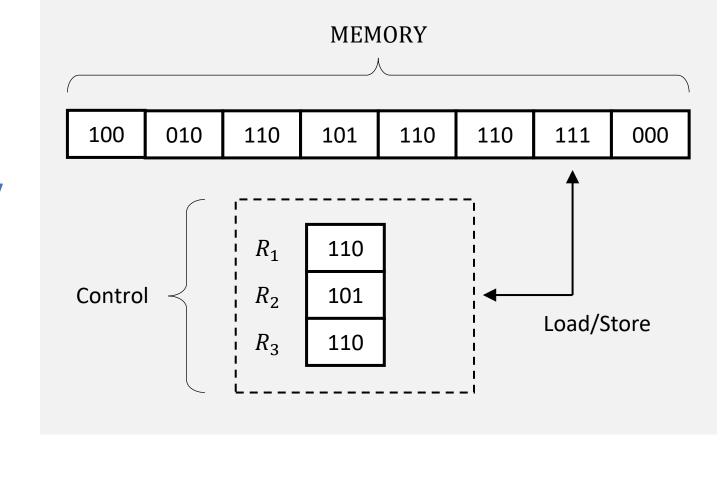
- $R_i \leftarrow 0$ or $R_i \leftarrow 1$ or $R_i \leftarrow R_i$
- $R_i \leftarrow R_i \text{ op } R_k \text{ where op } \in \{+, -, *, /, *, ==, <, >, &&, ||, &, |, ^, <<, >> \}$
- IF R_i GOTO k
- ACCEPT or REJECT



(The details are not completely standardized. This is just one reasonable version of the model)

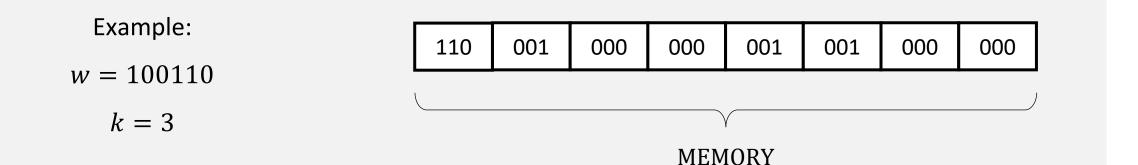
- Each R_i holds a k-bit "word" representing a number in $\{0, 1, ..., 2^k 1\}$
- k is called the "word size"
- In practice, maybe k = 64
- In theory, we think of k as "large enough" and growing with n
- Operations on words take O(1) time, unlike TM model!

- There is also a large memory
 (an array of words)
- Instructions:
 - $R_i \leftarrow \text{MEMORY}[R_i]$
 - MEMORY[R_i] $\leftarrow R_j$

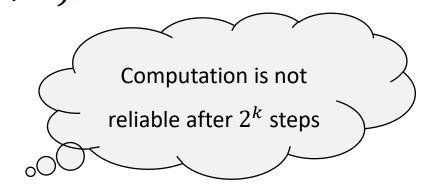


Instantly access any desired location in memory, unlike the TM model!

- Let the input be $w \in \{0,1\}^n$ and let the word size be $k \ge \log(n+1)$
- MEMORY has 2^k cells
- Initially, MEMORY[0] = n and MEMORY[i] = w_i for $1 \le i \le n$



- Let $Y \subseteq \{0, 1\}^*$, let P be a word RAM program, and let $T: \mathbb{N} \to \mathbb{N}$
- We say that P decides Y within time T if whenever we run P on an input $w \in \{0, 1\}^*$ using a word size $k \ge \log(|w| + 1)$:
 - P halts within T(|w|) steps
 - If P halts within 2^k steps and $w \in Y$, then P accepts
 - If P halts within 2^k steps and $w \notin Y$, then P rejects



- Word RAM Time Complexity ≈ Time Complexity "In Practice"
- Some version of the word RAM model is typically assumed (implicitly or explicitly) in algorithms courses and the computing industry

Robustness of P

• Let $Y \subseteq \{0, 1\}^*$

Theorem: There is a word RAM program that decides Y in time poly(n) if and only if there is a Turing machine that decides Y in time poly(n).

Proof omitted

Which problems

can be solved

through computation?

Is P a good model of tractability?

Boolean logic

- We have studied several rival models of computation
 - Turing machine, multi-tape Turing machine, word RAM, ...
- Next: Computation based on networks of logic gates
 - Closely related to practical electronics
 - Extremely important in theory, too!

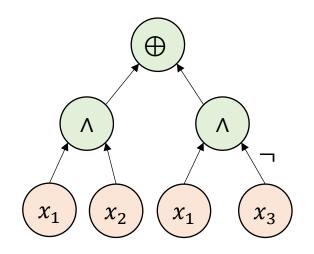
Binary logical operations

- AND: $a \wedge b$
- OR: *a* ∨ *b*
- XOR: $a \oplus b$
- Equality: a == b

- AND/OR combined with negations:
 - $\overline{a} \lor b$, $a \lor \overline{b}$, $\overline{a} \land \overline{b}$, etc.
- Notation: \bar{a} denotes the negation of a
 - Pronounced "NOT a"
 - Also written $\neg a$

Boolean formulas

- Definition: An n-variate Boolean formula is a rooted binary tree
 - Each internal node is labeled with a binary logical operation
 - Each leaf is labeled with 0, 1, or a variable among x_1, \dots, x_n
- It computes $f: \{0, 1\}^n \to \{0, 1\}$
- E.g., $f(x_1, x_2, x_3) = (x_1 \land x_2) \oplus (x_1 \land \bar{x}_3)$



Boolean circuits

 A Boolean circuit is like a Boolean formula, except that we permit vertices to have multiple outgoing wires

