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Deciding a language in time 𝑇

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝑇: ℕ → 0, ∞  be a function

• Definition: We say that 𝑌 can be decided in time 𝑇 if there exists a one-tape 

Turing machine 𝑀 such that

• 𝑀 decides 𝑌, and

• For every 𝑛 ∈ ℕ and every 𝑤 ∈ 0, 1 𝑛, the running time of 𝑀 on 𝑤 is at most 𝑇 𝑛
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The Time Hierarchy Theorem

• *assuming 𝑇 is a “reasonable” time complexity bound. We will come back to this

• “TIME 𝑜 𝑇 ” means the set of languages that are decidable in time 𝑜 𝑇

• “Given more time, we can solve more problems”
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Time Hierarchy Theorem: For every* function 𝑇: ℕ → ℕ such that 𝑇 𝑛 ≥ 𝑛,

there is a language 𝑌 ∈ TIME 𝑇4  such that 𝑌 ∉ TIME 𝑜 𝑇 .



Proof of the Time Hierarchy Theorem

• Let 𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

• On the next four slides, we will prove:

• 𝑌 ∈ TIME 𝑇4  

• 𝑌 ∉ TIME 𝑜 𝑇
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Proof that 𝑌 ∈ TIME 𝑇4

• An algorithm that decides 𝑌:

• Time complexity in the TM model?
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

Given the input 𝑀 :

1. Simulate 𝑀 on 𝑀  for 𝑇 𝑀  steps

2. If it rejects within that time, accept

3. Otherwise, reject



Proof that 𝑌 ∈ TIME 𝑇4

• Let 𝑛 = 𝑀

• Each simulated step takes 𝑂 𝑛  actual 

steps

• Total time complexity of multi-tape 

machine: 𝑂 𝑇 𝑛 ⋅ 𝑛

• After converting to a one-tape 

machine: 𝑂 𝑇 𝑛 2 ⋅ 𝑛2 = 𝑂 𝑇 𝑛 4
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps

𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …

1𝑘0 𝛿

1𝑇 𝑀



Time-constructible functions

• Definition: A function 𝑇: ℕ → ℕ is time-constructible if there exists a multi-

tape Turing machine 𝑀 such that

• Given input 1𝑛, 𝑀 halts with 1𝑇 𝑛  written on tape 2

• 𝑀 has time complexity 𝑂 𝑇 𝑛

• Our proof that 𝑌 ∈ TIME 𝑇4  works assuming 𝑇 is time-constructible

• All “reasonable” time complexity bounds (e.g., 5𝑛 or 𝑛2 or 2𝑛) are time-

constructible
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Time Hierarchy Theorem

• We showed 𝑌 ∈ TIME 𝑇4

• We still need to show 𝑌 ∉ TIME 𝑜 𝑇
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Time Hierarchy Theorem: For every time-constructible 𝑇: ℕ → ℕ,

there is a language 𝑌 ∈ TIME 𝑇4  such that 𝑌 ∉ TIME 𝑜 𝑇 .

𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps



Proof that 𝑌 ∉ TIME 𝑜 𝑇

• Let 𝑅 be a TM that decides 𝑌, with time complexity 𝑇′: ℕ → ℕ

• Add dummy states!

• For infinitely many values of 𝑛, there exists a TM 𝑅𝑛 such that 𝑅𝑛 decides 𝑌, 

𝑅𝑛 has time complexity 𝑇′, and 𝑅𝑛 = 𝑛

• Each 𝑅𝑛 must reject 𝑅𝑛  after more than 𝑇 𝑛  steps by diagonalization

• Therefore, 𝑇′ 𝑛 > 𝑇 𝑛  for infinitely many values of 𝑛, hence 𝑇′ is not 𝑜 𝑇
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𝑌 = 𝑀 ∶ 𝑀 rejects 𝑀  within 𝑇 𝑀  steps



Robustness of P, revisited

• Let 𝑌 ⊆ 0, 1 ∗. If 𝑌 ∉ P, then 𝑌 cannot be decided by…

• A poly-time one-tape Turing machine

• A poly-time multi-tape Turing machine

• OBJECTION: “Practical computers are very different from Turing machines!”

• RESPONSE: The “word RAM” model
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Word RAM model (RAM = Random Access Machine)

• (This model will not be on homework exercises or exams)

• A word RAM program consists of a list of instructions

• Available instructions include:

• 𝑅𝑖 ← 0 or 𝑅𝑖 ← 1 or 𝑅𝑖 ← 𝑅𝑗

• 𝑅𝑖 ← 𝑅𝑗  op 𝑅𝑘 where op ∈  

• IF 𝑅𝑖 GOTO 𝑘

• ACCEPT or REJECT
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+, -, *, /, %, ==, <, >, &&, ||, &, |, ^, <<, >>

𝑅𝑖  is a “global 
variable” of type 
unsigned int

(The details are not completely 
standardized. This is just one 
reasonable version of the model)



Word RAM model

• Each 𝑅𝑖  holds a 𝑘-bit “word” representing a number in 0, 1, … , 2𝑘 − 1

• 𝑘 is called the “word size”

• In practice, maybe 𝑘 = 64

• In theory, we think of 𝑘 as “large enough” and growing with 𝑛

• Operations on words take 𝑂 1  time, unlike TM model!
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Word RAM model

• There is also a large memory 

(an array of words)

• Instructions:

• 𝑅𝑖 ← MEMORY 𝑅𝑗

• MEMORY 𝑅𝑖 ← 𝑅𝑗

• Instantly access any desired location in memory, unlike the TM model!
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Word RAM model

• Let the input be 𝑤 ∈ 0, 1 𝑛 and let the word size be 𝑘 ≥ log 𝑛 + 1

• MEMORY has 2𝑘 cells

• Initially, MEMORY 0 = 𝑛 and MEMORY 𝑖 = 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑛
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Word RAM model

• Let 𝑌 ⊆ 0, 1 ∗, let 𝑃 be a word RAM program, and let 𝑇: ℕ → ℕ

• We say that 𝑃 decides 𝑌 within time 𝑇 if whenever we run 𝑃 on an 

input 𝑤 ∈ 0, 1 ∗ using a word size 𝑘 ≥ log 𝑤 + 1 :

• 𝑃 halts within 𝑇 𝑤  steps

• If 𝑃 halts within 2𝑘 steps and 𝑤 ∈ 𝑌, then 𝑃 accepts

• If 𝑃 halts within 2𝑘 steps and 𝑤 ∉ 𝑌, then 𝑃 rejects
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Computation is not 

reliable after 2𝑘 steps



Word RAM model

• Word RAM Time Complexity ≈ Time Complexity “In Practice”

• Some version of the word RAM model is typically assumed (implicitly 

or explicitly) in algorithms courses and the computing industry
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Robustness of P

• Let 𝑌 ⊆ 0, 1 ∗

• Proof omitted
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Theorem: There is a word RAM program that decides 𝑌 in time poly 𝑛  

if and only if there is a Turing machine that decides 𝑌 in time poly 𝑛 .



Which problems

can be solved

through computation?
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Is P a good model of tractability?
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Boolean logic

• We have studied several rival models of computation

• Turing machine, multi-tape Turing machine, word RAM, …

• Next: Computation based on networks of logic gates

• Closely related to practical electronics

• Extremely important in theory, too!
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Binary logical operations

• AND: 𝑎 ∧ 𝑏

• OR: 𝑎 ∨ 𝑏

• XOR: 𝑎 ⊕ 𝑏

• Equality: 𝑎 == 𝑏
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• AND/OR combined with negations:

• ത𝑎 ∨ 𝑏, 𝑎 ∨ ത𝑏, ത𝑎 ∧ ത𝑏, etc.

• Notation: ത𝑎 denotes the negation of 𝑎

• Pronounced “NOT 𝑎”

• Also written ¬𝑎



Boolean formulas

• Definition: An 𝑛-variate Boolean formula is a rooted binary tree

• Each internal node is labeled with a binary logical operation

• Each leaf is labeled with 0, 1, or a variable among 𝑥1, … , 𝑥𝑛

• It computes 𝑓: 0, 1 𝑛 → 0, 1

• E.g., 𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑥1 ∧ 𝑥2 ⊕ 𝑥1 ∧ ҧ𝑥3
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Boolean circuits

• A Boolean circuit is like a Boolean 

formula, except that we permit vertices 

to have multiple outgoing wires
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