CMSC 28100

Introduction to Complexity Theory

Autumn 2025

Instructor: William Hoza

Deciding a language in time T

- Let $Y \subseteq \{0, 1\}^*$ and let $T: \mathbb{N} \to [0, \infty)$ be a function
- **Definition:** We say that Y can be decided in time T if there exists a one-tape Turing machine M such that
 - *M* decides *Y* , and
 - For every $n \in \mathbb{N}$ and every $w \in \{0,1\}^n$, the running time of M on w is at most T(n)

The complexity class P

• **Definition:** For any function $T: \mathbb{N} \to [0, \infty)$, we define $TIME(T) = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time } O(T)\}$

Definition:

 $P = \{Y \subseteq \{0, 1\}^* : Y \text{ can be decided in time poly}(n)\}$

$$=\bigcup_{k=1}^{\infty}\mathrm{TIME}(n^k)$$

"Polynomial time"

The knapsack problem

• KNAPSACK = $\{\langle w_1, ..., w_k, v_1, ..., v_k, W, V \rangle : \text{ there exists } S \subseteq \{1, 2, ..., k\}$ such that $\Sigma_{i \in S} w_i \leq W$ and $\Sigma_{i \in S} v_i \geq V \}$

Conjecture: KNAPSACK ∉ P

The knapsack problem

• UNARY-VAL-KNAPSACK =
$$\{\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, W, 1^V \rangle : \text{ there}$$

exists $S \subseteq \{1, 2, ..., k\}$ such that
 $\Sigma_{i \in S} w_i \leq W \text{ and } \Sigma_{i \in S} v_i \geq V \}$

Theorem: UNARY-VAL-KNAPSACK ∈ P

Proof technique: "Dynamic programming"

Theorem: UNARY-VAL-KNAPSACK ∈ P

- Proof sketch: We are given $\langle w_1, ..., w_k, 1^{v_1}, ..., 1^{v_k}, W, 1^V \rangle$
- Let $S_{j,v}\subseteq\{0,1,\ldots,j\}$ minimize $\sum_{i\in S_{j,v}}w_i$ subject to $\sum_{i\in S_{j,v}}v_i\geq v$
 - Dummy item: $w_0 = v_0 = \infty$

Exercise: Rigorously analyze time complexity

- For j = 1 to k, for v = 1 to V:
 - Compute $S_{j,v} =$ whichever is less heavy: $S_{j-1,v}$ or $\{j\} \cup S_{j-1,v-v_j}$
- If $\sum_{i \in S_{k,V}} w_i \leq W$, then accept, otherwise reject

Note on standards of rigor

- Going forward, when we analyze specific algorithms, we will often assert that they run in polynomial time without a rigorous proof
 - In each case, one can rigorously prove the time bound by describing a TM implementation and reasoning about the motions of the heads...
 - But this is tedious
 - Note: We still prove correctness whenever it is nontrivial, just not efficiency
- You should follow this convention on exercise 13 and beyond

Which languages are in P?

Examples of languages in P

- PALINDROMES
- PARITY
- UNARY-VAL-KNAPSACK
- PRIMES

Which languages are not in P?

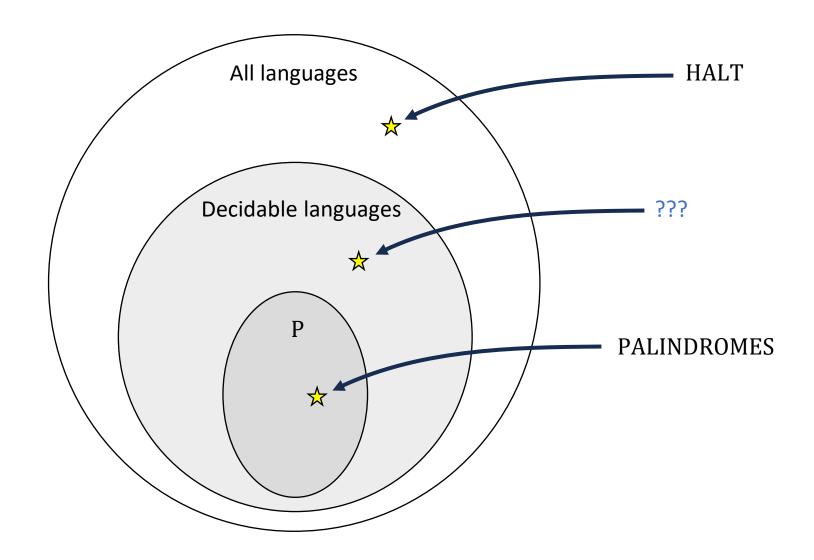
Examples of languages that are not in P

- Maybe CLIQUE ?
 - No proof...
- Maybe KNAPSACK ?
 - No proof...
- HALT

Intractability vs. undecidability

- Maybe every decidable language is in P???
 - Can every algorithm be modified to make it run in polynomial time??? 🐯

Intractability vs. undecidability



Intractability vs. undecidability

Theorem: There exists $Y \subseteq \{0,1\}^*$ such that Y is decidable, but $Y \notin P$.

- **Proof**: Let $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$
- On the next three slides, we will show that Y is decidable and $Y \notin P$

Proof that *Y* is decidable

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$

• An algorithm that decides *Y*:

Given the input $\langle M \rangle$:

- 1. Simulate M on $\langle M \rangle$ for $2^{|\langle M \rangle|}$ steps
- 2. If it rejects within that time, accept
- 3. Otherwise, reject

Proof that $Y \notin \mathbf{F}$

• Let R be a TM that decide

Which of the following best describes what we've proven?

A: We showed that $T(n) > 2^n$ for a single value of n

B: We showed that $T(n) > 2^n$ for all n

C: We showed that $T(n) > 2^n$ for all sufficiently large n

D: We showed that $T(n) > 2^n$ for infinitely many n

Respond at PollEv.com/whoza or text "whoza" to 22333

- Let $T: \mathbb{N} \to \mathbb{N}$ be the time complexity of R, and let $n = |\langle R \rangle|$
- Does R accept $\langle R \rangle$? No, because that would imply $\langle R \rangle \notin Y$
- Does R reject $\langle R \rangle$ within 2^n steps? No, because that would imply $\langle R \rangle \in Y$
- Only remaining possibility: R rejects $\langle R \rangle$ after more than 2^n steps
- Therefore, $T(n) > 2^n$... but this does not imply $T(n) \neq \text{poly}(n)$

Proof that $Y \notin P$

 $Y = \{ \langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } 2^{|\langle M \rangle|} \text{ steps} \}$

- Let R be a TM that decides Y, with time complexity $T: \mathbb{N} \to \mathbb{N}$
- Add dummy states!
- For infinitely many values of n, there exists a TM R_n such that R_n decides Y, R_n has time complexity T, and $|\langle R_n \rangle| = n$
- Each R_n must reject $\langle R_n \rangle$ after more than 2^n steps by diagonalization
- Therefore, $T(n) > 2^n$ for infinitely many values of n, hence $T(n) \neq \text{poly}(n)$

The Time Hierarchy Theorem

• Using the same proof idea, we can prove a more general theorem:

Time Hierarchy Theorem: For every* function $T: \mathbb{N} \to \mathbb{N}$ such that $T(n) \ge n$, there is a language $Y \in \mathrm{TIME}(T^4)$ such that $Y \notin \mathrm{TIME}(o(T))$.

- *assuming T is a "reasonable" time complexity bound. We will come back to this
- "TIME(o(T))" means the set of languages that are decidable in time o(T)
- "Given more time, we can solve more problems"

Proof of the Time Hierarchy Theorem

- Let $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$
- On the next four slides, we will prove:
 - $Y \in TIME(T^4)$
 - $Y \notin TIME(o(T))$

Proof that $Y \in \text{TIME}(T^4)$

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

• An algorithm that decides *Y*:

Given the input $\langle M \rangle$:

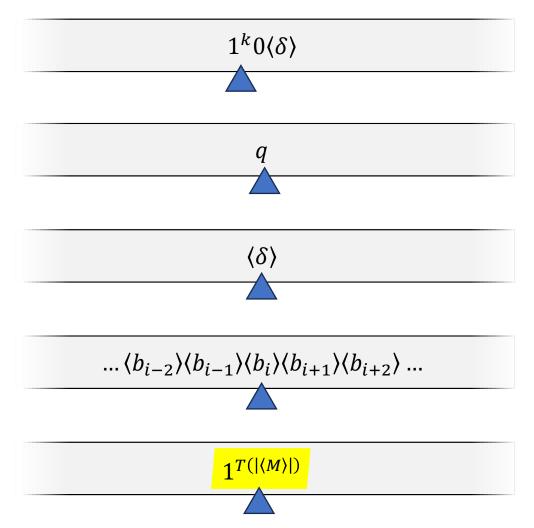
- 1. Simulate M on $\langle M \rangle$ for $T(|\langle M \rangle|)$ steps
- 2. If it rejects within that time, accept
- 3. Otherwise, reject

Time complexity in the TM model?

Proof that $Y \in \text{TIME}(T^4)$

 $Y = \{\langle M \rangle : M \text{ rejects } \langle M \rangle \text{ within } T(|\langle M \rangle|) \text{ steps} \}$

- Let $n = |\langle M \rangle|$
- Each simulated step takes O(n) actual steps
- Total time complexity of multi-tape machine: $O(T(n) \cdot n)$
- After converting to a one-tape machine: $O(T(n)^2 \cdot n^2) = O(T(n)^4)$



Time-constructible functions

- **Definition:** A function $T: \mathbb{N} \to \mathbb{N}$ is time-constructible if there exists a multitape Turing machine M such that
 - Given input 1^n , M halts with $1^{T(n)}$ written on tape 2
 - M has time complexity O(T(n))
- Our proof that $Y \in TIME(T^4)$ works assuming T is time-constructible
- All "reasonable" time complexity bounds (e.g., 5n or n^2 or 2^n) are time-constructible