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Deciding a language in time T

eletY € {0,1}* andlet T: N — |0, o) be a function

* Definition: We say that ¥ can be decided in time T if there exists a one-tape
Turing machine M such that

e M decides Y, and

* Foreveryn € N and every w € {0, 1}, the running time of M on w is at most T(n)



The complexity class P

* Definition: For any function T: N — [0, o), we define

TIME(T) = {Y € {0,1}* : Y can be decided in time O(T)}
* Definition:

P={Y €{0,1}* : Y can be decided in time poly(n)}

= U TIME(n*)
k=1

* “Polynomial time”



The knapsack problem

« KNAPSACK = {{wy, ..., Wy, vy, ..., Uy, W, V) : there exists S € {1, 2, ..., k}

such that2;co w; < W and Xjcs v; =V}

Conjecture: KNAPSACK & P




The knapsack problem

« UNARY-VAL-KNAPSACK = {{wq, ..., wy, 1V1, ..., 17, W, 1") : there
exists S € {1, 2, ..., k} such that

Theorem: UNARY-VAL-KNAPSACK € P

* Proof technique: “Dynamic programming”



Theorem: UNARY-VAL-KNAPSACK € P

* Proof sketch: We are given (wy, ..., wy, 1¥1, ..., 1Yk, W, 1V)

* LetS;, €1{0,1,...,j} minimize Ziesj,v w; subject to Ziesj,,, vV =V

* Dummy item: wyg = vy = ©©
Exercise: Rigorously analyze time complexity

.For]=1t0k,f0rv=1tOV oO

 Compute S;,, = whichever is less heavy: §;_;, or {j}uU Sj-1,v-v;

* If Xies,, Wi < W, then accept, otherwise reject



Note on standards of rigor

* Going forward, when we analyze specific algorithms, we will often assert
that they run in polynomial time without a rigorous proof

* In each case, one can rigorously prove the time bound by describing a TM

implementation and reasoning about the motions of the heads...
* But this is tedious

* Note: We still prove correctness whenever it is nontrivial, just not efficiency

* You should follow this convention on exercise 13 and beyond



Which languages are in P?



Examples of languages in P

* PALINDROMES
* PARITY
* UNARY-VAL-KNAPSACK

* PRIMES



Which languages are not in P?



Examples of languages that are not in P

* Maybe CLIQUE ?

* No proof...

 Maybe KNAPSACK ?

* No proof...

* HALT
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Intractability vs. undecidability

* Maybe every decidable language is in P?7??

e Can every algorithm be modified to make it run in polynomial time??? «;
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Intractability vs. undecidability

All languages

HALT

w

Decidable languages

277

PALINDROMES
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Intractability vs. undecidability

Theorem: There exists Y € {0, 1}* such that Y is decidable, but Y ¢ P.

* Proof: Let Y = {(M) : M rejects (M) within 2™ steps}

* On the next three slides, we will show that Y is decidable and Y & P
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Proof that Y is decidable

* An algorithm that decides Y

Y = {(M) : M rejects (M) within 2/™)| steps}

Given the input (M):
1. Simulate M on (M) for 2!l steps

2. If it rejects within that time, accept

3. Otherwise, reject
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< Which of the following best describes what we’ve proven? >

P rO Of t h at Y ‘% F < A: We showed that T(n) > 2" >< B: We showed that T(n) > 2" >

for a single value of n foralln

C: We showed that T'(n) > 2" D: We showed that T(n) > 2"
e Let R be aTM that decide for all sufficiently large n for infinitely many n

Respond at PollEv.com/whoza or text “whoza” to 22333

* Let T: N — N be the time complexity of R, and let n = |(R)|

* Does R accept (R)? No, because that would imply (R) € Y
* Does R reject (R) within 2™ steps? No, because that would imply (R) € Y
* Only remaining possibility: R rejects (R) after more than 2™ steps

* Therefore, T(n) > 2™... but this does not imply T(n) # poly(n) &

]
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PrOOf that Y 1% P Y = {(M) : M rejects (M) within 2/™)| steps}

* Let R be a TM that decides Y, with time complexity T: N —- N
 Add dummy states!

* For infinitely many values of n, there exists a TM R,, such that R,, decides Y,

R., has time complexity T, and |(R,;)| = n
* Each R,, must reject (R,,) after more than 2" steps by diagonalization

* Therefore, T(n) > 2™ for infinitely many values of n, hence T(n) # poly(n)
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The Time Hierarchy Theorem

* Using the same proof idea, we can prove a more general theorem:

Time Hierarchy Theorem: For every* function T: N — N such that T(n) = n,

there is a language Y € TIME(T*) such that Y ¢ TIME(o(T)).

e *assuming T is a “reasonable” time complexity bound. We will come back to this

» “TIME(0(T))” means the set of languages that are decidable in time o(T)

e “Given more time, we can solve more problems”
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Proof of the Time Hierarchy Theorem

e letY = {(M) : M rejects (M) within T(|(M)|) steps}

* On the next four slides, we will prove:
e Y € TIME(T%)

* Y ¢ TIME(o(T))
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Proof that Y € TIME(T*)

* An algorithm that decides Y:

Y = {(M) : M rejects (M) within T(|{M)|) steps}

Given the input (M):
1. Simulate M on (M) for T(|(M)|) steps
2. Ifit rejects within that time, accept

3. Otherwise, reject

* Time complexity in the TM model?
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Proof that Y € TIME(T*%)

* Lletn = |[(M)]

* Each simulated step takes O(n) actual
steps
* Total time complexity of multi-tape

machine: O(T(n) - n)

e After converting to a one-tape

machine: 0(T(n)? - n%) = 0(T(n)*)

Y = {(M) : M rejects (M) within T(|{M)|) steps}
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Time-constructible functions

* Definition: A function T: N = N is time-constructible if there exists a multi-
tape Turing machine M such that

* Given input 1™, M halts with 17 written on tape 2

* M has time complexity O(T(n))
e Our proof that Y € TIME(T*) works assuming T is time-constructible

* All “reasonable” time complexity bounds (e.g., 5n or n* or 2™) are time-

constructible
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