
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Asymptotic notation

• Let 𝑇, 𝑓: ℕ → 0, ∞

• Roughly:

• 𝑇 is 𝑂 𝑓 if 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛 for some large constant 𝐶

• 𝑇 is Ω 𝑓 if 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛 for some small constant 𝑐

• 𝑇 is 𝑜(𝑓) if 𝑇 𝑛 ≤ 𝑐 ⋅ 𝑓 𝑛 for every small constant 𝑐

• 𝑇 is 𝜔 𝑓 if 𝑇 𝑛 ≥ 𝐶 ⋅ 𝑓 𝑛 for every large constant 𝐶

2

Exponential vs. polynomial

• Proved last time: For every constant 𝑘 ∈ ℕ, we have 𝑛𝑘 = 𝑜 2𝑛

• We say 𝑇 𝑛 is poly 𝑛 if there is some constant 𝑘 such that 𝑇 𝑛 is 𝑂 𝑛𝑘

3

Big-Θ

• Let 𝑇, 𝑓: ℕ → 0, ∞ be any two functions

• We say that 𝑇 is Θ 𝑓 if 𝑇 is 𝑂 𝑓 and 𝑇 is Ω 𝑓

• Example: 0.1𝑛2 + 14 is Θ 𝑛2 and Θ 𝑛2 + 2𝑛1.4 , but not Θ 𝑛

4

Let 𝑇 𝑛 = 23𝑛+4. Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: 𝑇(𝑛) is Θ 23𝑛

A: 𝑇 𝑛 is Ω 2𝑛 B: 𝑇 𝑛 is 2Θ 𝑛

D: 𝑇 𝑛 is 𝑂 2𝑛

Summary of asymptotic notation

Notation In words Analogy

𝑇 is 𝑜 𝑓 𝑇 𝑛 grows more slowly than 𝑓 𝑛 <

𝑇 is 𝑂 𝑓 𝑇 𝑛 is at most 𝐶 ⋅ 𝑓 𝑛 ≤

𝑇 is Θ 𝑓 𝑇 𝑛 and 𝑓 𝑛 grow at the same rate =

𝑇 is Ω 𝑓 𝑇 𝑛 is at least 𝑐 ⋅ 𝑓 𝑛 ≥

𝑇 is 𝜔 𝑓 𝑇 𝑛 grows more quickly than 𝑓 𝑛 >

5

Note: Big-𝑂 is not just for time complexity!

• We can use asymptotic notation (big-𝑂, etc.) any time we are trying

to understand some kind of “scaling behavior”

• For example, let 𝐺 be a simple undirected graph with 𝑁 vertices

• 𝐺 has 𝑂 𝑁2 edges

• If 𝐺 is connected, then 𝐺 has Ω 𝑁 edges

• Admittedly, we are especially interested in time complexity…

6

Deciding a language in time 𝑇

• Let 𝑌 ⊆ 0, 1 ∗ and let 𝑇: ℕ → 0, ∞ be a function

• Definition: We say that 𝑌 can be decided in time 𝑇 if there exists a one-tape

Turing machine 𝑀 such that

• 𝑀 decides 𝑌, and

• For every 𝑛 ∈ ℕ and every 𝑤 ∈ 0, 1 𝑛, the running time of 𝑀 on 𝑤 is at most 𝑇 𝑛

7

The complexity class P

• Definition: For any function 𝑇: ℕ → 0, ∞ , we define

TIME 𝑇 = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time 𝑂 𝑇

• Definition:

P = 𝑌 ⊆ 0, 1 ∗ ∶ 𝑌 can be decided in time poly 𝑛

= ራ

𝑘=1

∞

TIME 𝑛𝑘

• “Polynomial time”

8

P: Our model of tractability

• Let 𝑌 ⊆ 0, 1 ∗

• If 𝑌 ∈ P, then we will consider 𝑌 “tractable”

• If 𝑌 ∉ P, then we will consider 𝑌 “intractable”

• Is this a good model? What about multi-tape Turing machines?

9

Multi-tape Turing machines, revisited

• Let 𝑌 ⊆ 0, 1 ∗, let 𝑘 be a positive integer, and let 𝑇: ℕ → ℕ

10

Theorem: If there is a 𝑘-tape Turing machine that decides 𝑌 with

time complexity 𝑇 𝑛 , then there is a 1-tape Turing machine that

decides 𝑌 with time complexity 𝑂 𝑇(𝑛)2 .

• Proof sketch (1 slide): For simplicity, assume 𝑇 𝑛 ≥ 𝑛

• Recall: To simulate step 𝑖, we scan

back and forth over 𝑛 + 2𝑖 cells of

the tape

• Simulating one step of the 𝑘-tape

machine takes 𝑂 𝑛 + 𝑇 𝑛 steps

• Overall time complexity: 𝑇 𝑛 ⋅ 𝑂 𝑛 + 𝑇 𝑛 = 𝑂 𝑇 𝑛 2

Efficiently Simulating 𝑘 tapes using 1 tape

11

1 1 0⋯ ⊔ ⊔

⋯ 0 # 1 $ ⊔

0

⊔

Robustness of P

• Conclusion: We could define P using one-tape Turing machines or using

multi-tape Turing machines

• Either way, we get the exact same set of languages

12

Theory vs. practice

• Disclaimer: P is not a perfect model of tractability

• Even if some problem is technically in P, it might not be “solvable in

practice”

• Even if some problem is technically not in P, it might be “solvable in

practice”

13

Analogy: Gravity

• Physics 101: “Gravity is a constant downward

force of 9.8 N/kg”

• Physics 102: Newton’s Law of Gravitation:

𝐹 = 𝐺 ⋅
𝑚1 ⋅ 𝑚2

𝑟2

• Better, but still not perfect!

14

Analogy: Gravity

• Newton’s Law of Gravitation does not correctly

predict Mercury’s motion around the sun!

• “…all models are wrong, but some are useful.” –George Box

• The complexity class P does not 100% align with the set of problems that

are solvable in practice…

• But the alignment is pretty good, and studying P will absolutely give us

real insights into the nature of computation
15

Which problems

can be solved

through computation?

16

Which languages are in P?

17

Example: Primality testing

• PRIMES = 𝐾 ∶ 𝐾 is a prime number

• Proof attempt: For 𝑀 = 2, 3, … , 𝐾 − 1, check if 𝐾/𝑀 is an integer.

• Time complexity is poly 𝐾 , which is “pseudo-polynomial time”

• “Polynomial time” means time complexity poly 𝑛 , where 𝑛 = 𝐾 ≈ log 𝐾!

• The theorem is true, but the proof is beyond the scope of this course

18

Theorem: PRIMES ∈ P

Pseudo-polynomial time

• Suppose 𝑌 = 𝑥, 𝑘 ∶ 𝑘 ∈ ℕ and (something)

• “Polynomial time” means poly 𝑛 time where 𝑛 ≈ 𝑥 + log 𝑘

• “Pseudo-polynomial time” means poly 𝑛′ time where 𝑛′ = 𝑥 + 𝑘

• 𝑌′ = 𝑥, 1𝑘 ∶ 𝑘 ∈ ℕ and (something)

• If it’s reasonable to assume that 𝑘 is small, then pseudo-polynomial

time might be good enough

• Interesting example: The knapsack problem

19

The knapsack problem

• Given: Positive integers 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, 𝑉

• Question: Is there a set 𝑆 ⊆ 1, 2, … , 𝑘 such that

σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉?

• Interpretation: There are 𝑘 items

• Item 𝑖 is worth 𝑣𝑖 dollars, and it weighs 𝑤𝑖 pounds

• We want to collect items worth 𝑉 dollars, but our knapsack can only hold 𝑊 pounds

20

The knapsack problem

• There is no known polynomial-time algorithm that decides KNAPSACK

• However, there is a pseudo-polynomial-time algorithm!

21

The knapsack problem

• KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 𝑣1, … , 𝑣𝑘 , 𝑊, 𝑉 ∶ there exists 𝑆 ⊆ {1, 2, … , 𝑘}

 such that Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

22

Conjecture: KNAPSACK ∉ P

The knapsack problem

• UNARY-VAL-KNAPSACK = { 𝑤1, … , 𝑤𝑘 , 1𝑣1 , … , 1𝑣𝑘 , 𝑊, 1𝑉 ∶ there

 exists 𝑆 ⊆ {1, 2, … , 𝑘} such that

 Σ𝑖∈𝑆 𝑤𝑖 ≤ 𝑊 and Σ𝑖∈𝑆 𝑣𝑖 ≥ 𝑉}

23

Theorem: UNARY-VAL-KNAPSACK ∈ P

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Asymptotic notation
	Slide 3: Exponential vs. polynomial
	Slide 4: Big-cap theta
	Slide 5: Summary of asymptotic notation
	Slide 6: Note: Big-cap O is not just for time complexity!
	Slide 7: Deciding a language in time cap T
	Slide 8: The complexity class P
	Slide 9: P: Our model of tractability
	Slide 10: Multi-tape Turing machines, revisited
	Slide 11: Efficiently Simulating k tapes using 1 tape
	Slide 12: Robustness of P
	Slide 13: Theory vs. practice
	Slide 14: Analogy: Gravity
	Slide 15: Analogy: Gravity
	Slide 16: Which problems can be solved through computation?
	Slide 17: Which languages are in P?
	Slide 18: Example: Primality testing
	Slide 19: Pseudo-polynomial time
	Slide 20: The knapsack problem
	Slide 21: The knapsack problem
	Slide 22: The knapsack problem
	Slide 23: The knapsack problem

