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Asymptotic notation

eletT,f:N — [0, )

* Roughly:
 TisO(f)ifT(n) < C - f(n) for some large constant C
* TisQ(f)ifT(n) = c - f(n) for some small constant ¢
e Tiso(f)ifT(n) < c- f(n) for every small constant ¢

e Tisw(f)ifT(n) = C - f(n) for every large constant C



Exponential vs. polynomial

e Proved last time: For every constant k € N, we have n* = 0(2")

* We say T(n) is poly(n) if there is some constant k such that T(n) is O(nk)



Big-0

*LletT,f:N — [0, 0) be any two functions
* Wesaythat T isO(f) if Tis O(f) and T is Q(f)

e Example: 0.1n% + 14 is ®(n?) and O(n? + 2n'*), but not O(n)

< Let T(n) = 234, Which of the following statements is false? >

< A:T(n)is Q(2") >< B: T(n) is 29 >
< C: T(n) is ©(23") >< D:T(n) is 0(2™) >

Respond at PollEv.com/whoza or text “whoza” to 22333




Summary of asymptotic notation

Tiso(f) T(n) grows more slowly than f(n) <
TisO(f) T(n)isat most C - f(n) <
TisO(f) T(n)and f(n)grow at the same rate =
TisQ(f) T(n)isatleastc:- f(n) >

Tisw(f) T(n)grows more quickly than f(n) >



Note: Big-0 is not just for time complexity!

* We can use asymptotic notation (big-0, etc.) any time we are trying

to understand some kind of “scaling behavior”

* For example, let G be a simple undirected graph with N vertices
* G has O(N?) edges

* |If G is connected, then G has Q(N) edges

 Admittedly, we are especially interested in time complexity...



Deciding a language in time T

eletY € {0,1}* andlet T: N — |0, o) be a function

* Definition: We say that ¥ can be decided in time T if there exists a one-tape
Turing machine M such that

e M decides Y, and

* Foreveryn € N and every w € {0, 1}, the running time of M on w is at most T(n)



The complexity class P

* Definition: For any function T: N — [0, o), we define

TIME(T) = {Y € {0,1}* : Y can be decided in time O(T)}
* Definition:

P={Y €{0,1}* : Y can be decided in time poly(n)}

= U TIME(n*)
k=1

e “Polynomial time”



P: Our model of tractability

* LetY € {0,1}
e IfY € P, then we will consider Y “tractable”
e IfY & P, then we will consider Y “intractable”

* Is this a good model? What about multi-tape Turing machines?



Multi-tape Turing machines, revisited

e LetY € {0, 1}, let k be a positive integer, and let T: N —» N

Theorem: If there is a k-tape Turing machine that decides Y with
time complexity T'(n), then there is a 1-tape Turing machine that

decides Y with time complexity O (T (n)?%).
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Efficiently Simulating k tapes using 1 tape

* Proof sketch (1 slide): For simplicity, assume T(n) = n

* Recall: To simulate step i, we scan

back and forth over n + 2i cells of 0 1
the tape

 Simulating one step of the k-tape
machine takes O(n + T(n)) steps A

» Overall time complexity: T(n) - O(n + T(n)) = 0(T(n)?)



Robustness of P

* Conclusion: We could define P using one-tape Turing machines or using

multi-tape Turing machines

* Either way, we get the exact same set of languages
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Theory vs. practice

* Disclaimer: P is not a perfect model of tractability

* Even if some problem is technically in P, it might not be “solvable in

practice”

* Even if some problem is technically not in P, it might be “solvable in

practice”
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Analogy: Gravity

* Physics 101: “Gravity is a constant downward

force of 9.8 N/kg”

* Physics 102: Newton’s Law of Gravitation:

mi-m
F=¢(- 1 2
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* Better, but still not perfect!
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Analogy: Gravity

* Newton’s Law of Gravitation does not correctly

predict Mercury’s motion around the sun!
e “ ..all models are wrong, but some are useful.” —George Box

* The complexity class P does not 100% align with the set of problems that

are solvable in practice...

e But the alignment is pretty good, and studying P will absolutely give us

real insights into the nature of computation
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Which problems
can be solved

through computation?



Which languages are in P?



Example: Primality testing

* PRIMES = {(K) : K is a prime number}

Theorem: PRIMES € P

* Proof attempt: For M = 2,3, ...,K — 1, check if K/M is an integer.
* Time complexity is poly(K ), which is “pseudo-polynomial time”

* “Polynomial time” means time complexity poly(n), wheren = |(K)| = log K

* The theorem is true, but the proof is beyond the scope of this course
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Pseudo-polynomial time

* Suppose Y = {{x, k) : k € N and (something)}
* “Polynomial time” means poly(n) time where n = |x| + log k

* “Pseudo-polynomial time” means poly(n’) time wheren' = |x| + k
¢ V' — {(x, 1") : k € N and (something)}

e If it's reasonable to assume that k is small, then pseudo-polynomial

time might be good enough

* Interesting example: The knapsack problem
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The knapsack problem

* Given: Positive integers wq, ..., Wy, U1, ., U, W,V

e Question: Is thereaset S € {1, 2, ..., k} such that
Yoeow; < W and Yiccv; = V?
* Interpretation: There are k items
* Item i is worth v; dollars, and it weighs w; pounds

 We want to collect items worth V dollars, but our knapsack can only hold W pounds
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The knapsack problem

* There is no known polynomial-time algorithm that decides KNAPSACK

* However, there is a pseudo-polynomial-time algorithm!
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The knapsack problem

« KNAPSACK = {{wy, ..., Wy, vy, ..., Uy, W, V) : there exists S € {1, 2, ..., k}

such that2;co w; < W and Xjcs v; =V}

Conjecture: KNAPSACK & P
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The knapsack problem

« UNARY-VAL-KNAPSACK = {{wq, ..., Wy, 171, ..., 1Yk, W, 1") : there
exists S € {1, 2, ..., k} such that

Theorem: UNARY-VAL-KNAPSACK € P
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