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Midterm exam

• Midterm exam will be in class on Friday, October 24

• To prepare for the midterm, you only need to study the material prior 

to this point

• The midterm will be about Turing machines, decidability, and 

undecidability
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Which problems

can be solved

through computation?

3



Applying our theory

• Question: In the year 1988, were there 50 U.S. senators, every pair of 

which voted the same way more than 50% of the time?

• Step 1: Gather data

4



Agreement graph

• Step 2: Construct “agreement graph”

• Edge 𝑢, 𝑣  means that senators 𝑢 and 𝑣

agreed on most votes

• Question: Are there 50 vertices in this graph that are all adjacent to 

one another?
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The clique problem

• A 𝑘-clique in a graph 𝐺 = 𝑉, 𝐸  is a set 𝑆 ⊆ 𝑉 such that 𝑆 = 𝑘 and 

every two vertices in 𝑆 are connected by an edge

• Example: This graph has a 4-clique
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Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: If 𝐺 has fewer than 𝑘
2

 edges,

then 𝐺 does not have a 𝑘-clique

A: Every vertex in a 𝑘-clique has
degree at least 𝑘 − 1

B: A single graph might have
many 𝑘-cliques

D: If every vertex has degree at
least 𝑘 − 1, then 𝐺 has a 𝑘-clique



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?
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a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

• Yes! 𝑆 = {b, d, e, g}
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a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

Is CLIQUE decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333 

C: It depends on whether 𝐺  is an
adjacency matrix or adjacency list

B: No

D: It’s not a language, so the
question doesn’t make sense

A: Yes



The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Claim: CLIQUE is decidable

• Proof sketch: Given 𝐺, 𝑘  where 𝐺 = 𝑉, 𝐸 , try all possible subsets 𝑆 ⊆ 𝑉

• Check whether 𝑆 = 𝑘 

• Check whether 𝑢, 𝑣 ∈ 𝐸 for every 𝑢, 𝑣 ∈ 𝑆 such that 𝑢 ≠ 𝑣

• If we find a 𝑘-clique, accept; otherwise, reject.
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The clique problem

• Question: In the year 1988, were there 50 U.S. senators, every pair of 

which voted the same way more than 50% of the time?

• Step 1: Gather data 

• Step 2: Construct agreement graph 

• Step 3: Apply CLIQUE algorithm
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Our algorithm is so slow that it’s worthless

• Question: In the year 1988, were there 50 U.S. senators, every pair 

of which voted the same way more than 50% of the time?

• Checking all possible sets of senators would take longer than a 

lifetime!

• One begins to feel that CLIQUE might as well be undecidable!
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Which problems

can be solved

through computation?
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Refining our model

• Our model so far: Decidable vs. undecidable

• Now we will refine our model

• We only have a limited amount of time (and other resources)

• “Complexity theory” vs. “Computability theory”
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Time complexity

• Let 𝑀 be a Turing machine

• The time complexity of 𝑀 is a function 𝑇𝑀: ℕ → ℕ

𝑇𝑀 𝑛 ≔ max
𝑤∈ 0,1 𝑛

running time of 𝑀 on 𝑤

• We focus on the worst-case 𝑛-bit input
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Scaling behavior

• We focus on the limiting behavior of 𝑇𝑀 𝑛  as 𝑛 → ∞

• How “quickly” does the running time increase when we consider larger 

and larger inputs?
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Asymptotic analysis

• Two possible time complexities:

𝑇1 𝑛 = 3𝑛2 + 14

𝑇2 𝑛 = 2𝑛2 + 64𝑛 + 𝑛

• When 𝑛 is large, the leading 𝐶 ⋅ 𝑛2 term dominates

• We will ignore the low-order terms and the leading coefficient 𝐶

• We focus on the 𝑛2 part (“quadratic time”)
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Big-𝑂 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• Definition: We say that 𝑇 is 𝑂 𝑓  if there exist 𝐶, 𝑛∗ ∈ ℕ such that for 

every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛

• Notation: 𝑇 ∈ 𝑂 𝑓  or 𝑇 ≤ 𝑂 𝑓  or 𝑇 = 𝑂 𝑓
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Big-𝑂 notation examples

• 3𝑛2 + 14 is 𝑂 𝑛2

• 3𝑛2 + 14 is 𝑂 𝑛2 + 𝑛

• 3𝑛2 + 14 is 𝑂 𝑛3

• 3𝑛2 + 14 is not 𝑂 𝑛1.9
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Example: Palindromes

• Proof sketch: Recall our Turing machine that decides PALINDROMES

• At most 𝑛/2 back-and-forth passes over the input

• Each back-and-forth pass takes 𝑂 𝑛  steps

• Total time complexity: 𝑂 𝑛 ⋅ 𝑛/2 = 𝑂 𝑛2
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Claim: There exists a Turing machine that decides 

PALINDROMES with time complexity 𝑂 𝑛2 .



Optimality

• Is there a faster Turing machine that decides PALINDROMES?

• Answer: No

• Use big-Ω notation to make this precise
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Big-Ω

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is Ω 𝑓  if there exist 𝑐 ∈ 0, 1  and 𝑛∗ ∈ ℕ such that 

for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛

• Example: 0.1𝑛2 + 14 is Ω 𝑛2  and Ω 𝑛 , but not Ω 𝑛3
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Palindromes time complexity lower bound

• Let 𝑀 be a one-tape Turing machine

• (Proof omitted)
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Theorem: If 𝑀 decides PALINDROMES, then 

the time complexity of 𝑀 is Ω 𝑛2 .



Palindromes, revisited

• Proof sketch:

1. Copy the input to tape 2

2. Scan tape 1 from left to right and scan tape 2 from right to left to compare
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Claim: There exists a two-tape Turing machine 𝑀 that 

decides PALINDROMES with time complexity 𝑂 𝑛 .



Multi-tape Turing machines, revisited

• Multi-tape TMs can decide PALINDROMES in 𝑂 𝑛  time…

• But single-tape TMs require Ω 𝑛2  time!

• So multi-tape / single-tape TMs are not equivalent after all?
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Exponential vs. polynomial

• In this course, we are not concerned with the distinction between 

𝑂 𝑛  time and 𝑂 𝑛2  time

• We’re happy with either

• Our focus: The distinction between a polynomial time complexity, such 

as 𝑇 𝑛 = 𝑛2, and an exponential time complexity, such as 𝑇 𝑛 = 2𝑛

• Usable vs. useless
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Exponential vs. polynomial

• We write 𝑇 𝑛 = poly 𝑛  if there is some 𝑘 such that 𝑇 𝑛 = 𝑂 𝑛𝑘

• Exponentials grow much faster than polynomials!

• We can make this precise using little-𝑜 and little-𝜔 notation
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Little-𝑜 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is 𝑜 𝑓  if for every 𝑐 ∈ 0, 1 , there exists 𝑛∗ ∈ ℕ such 

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 < 𝑐 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= 0
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Little-𝜔 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞  be any two functions

• We say that 𝑇 is 𝜔 𝑓  if for every 𝐶 ∈ ℕ, there exists 𝑛∗ ∈ ℕ such 

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 > 𝐶 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= ∞
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Exponential vs. polynomial

• Proof: If 𝑛 ≥ 𝑘 + 1, then

2𝑛 = # subsets of {1, 2, … , 𝑛} = ෍

𝑖=0

𝑛
𝑛
𝑖

≥
𝑛

𝑘 + 1
≥

𝑛

𝑘 + 1

𝑘+1

= Ω 𝑛𝑘+1

= 𝜔 𝑛𝑘 .
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Claim: For every constant 𝑘 ∈ ℕ, we have 𝑛𝑘 = 𝑜 2𝑛
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