
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Midterm exam

• Midterm exam will be in class on Friday, October 24

• To prepare for the midterm, you only need to study the material prior

to this point

• The midterm will be about Turing machines, decidability, and

undecidability

2

Which problems

can be solved

through computation?

3

Applying our theory

• Question: In the year 1988, were there 50 U.S. senators, every pair of

which voted the same way more than 50% of the time?

• Step 1: Gather data

4

Agreement graph

• Step 2: Construct “agreement graph”

• Edge 𝑢, 𝑣 means that senators 𝑢 and 𝑣

agreed on most votes

• Question: Are there 50 vertices in this graph that are all adjacent to

one another?

5

Senator 2
Senator 1

Senator 3 Senator 4

The clique problem

• A 𝑘-clique in a graph 𝐺 = 𝑉, 𝐸 is a set 𝑆 ⊆ 𝑉 such that 𝑆 = 𝑘 and

every two vertices in 𝑆 are connected by an edge

• Example: This graph has a 4-clique

6

Which of the following statements is false?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: If 𝐺 has fewer than 𝑘
2

 edges,

then 𝐺 does not have a 𝑘-clique

A: Every vertex in a 𝑘-clique has
degree at least 𝑘 − 1

B: A single graph might have
many 𝑘-cliques

D: If every vertex has degree at
least 𝑘 − 1, then 𝐺 has a 𝑘-clique

The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

7

a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Example: Let 𝐺 be the graph with the following adjacency matrix

• Does 𝐺 have a 4-clique?

• Yes! 𝑆 = {b, d, e, g}

8

a b c d e f g

a 0 1 1 0 0 1 0

b 1 0 0 1 1 0 1

c 1 0 0 0 1 0 1

d 0 1 0 0 1 0 1

e 0 1 1 1 0 1 1

f 1 0 0 0 1 0 1

g 0 1 1 1 1 1 0

Is CLIQUE decidable?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: It depends on whether 𝐺 is an
adjacency matrix or adjacency list

B: No

D: It’s not a language, so the
question doesn’t make sense

A: Yes

The clique problem

• Let CLIQUE = { 𝐺, 𝑘 ∶ 𝐺 has a 𝑘-clique}

• Claim: CLIQUE is decidable

• Proof sketch: Given 𝐺, 𝑘 where 𝐺 = 𝑉, 𝐸 , try all possible subsets 𝑆 ⊆ 𝑉

• Check whether 𝑆 = 𝑘

• Check whether 𝑢, 𝑣 ∈ 𝐸 for every 𝑢, 𝑣 ∈ 𝑆 such that 𝑢 ≠ 𝑣

• If we find a 𝑘-clique, accept; otherwise, reject.

9

The clique problem

• Question: In the year 1988, were there 50 U.S. senators, every pair of

which voted the same way more than 50% of the time?

• Step 1: Gather data

• Step 2: Construct agreement graph

• Step 3: Apply CLIQUE algorithm

10

Our algorithm is so slow that it’s worthless

• Question: In the year 1988, were there 50 U.S. senators, every pair

of which voted the same way more than 50% of the time?

• Checking all possible sets of senators would take longer than a

lifetime!

• One begins to feel that CLIQUE might as well be undecidable!

11

Which problems

can be solved

through computation?

12

Refining our model

• Our model so far: Decidable vs. undecidable

• Now we will refine our model

• We only have a limited amount of time (and other resources)

• “Complexity theory” vs. “Computability theory”

13

Time complexity

• Let 𝑀 be a Turing machine

• The time complexity of 𝑀 is a function 𝑇𝑀: ℕ → ℕ

𝑇𝑀 𝑛 ≔ max
𝑤∈ 0,1 𝑛

running time of 𝑀 on 𝑤

• We focus on the worst-case 𝑛-bit input

14

Scaling behavior

• We focus on the limiting behavior of 𝑇𝑀 𝑛 as 𝑛 → ∞

• How “quickly” does the running time increase when we consider larger

and larger inputs?

15

Asymptotic analysis

• Two possible time complexities:

𝑇1 𝑛 = 3𝑛2 + 14

𝑇2 𝑛 = 2𝑛2 + 64𝑛 + 𝑛

• When 𝑛 is large, the leading 𝐶 ⋅ 𝑛2 term dominates

• We will ignore the low-order terms and the leading coefficient 𝐶

• We focus on the 𝑛2 part (“quadratic time”)

16

Big-𝑂 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞ be any two functions

• Definition: We say that 𝑇 is 𝑂 𝑓 if there exist 𝐶, 𝑛∗ ∈ ℕ such that for

every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≤ 𝐶 ⋅ 𝑓 𝑛

• Notation: 𝑇 ∈ 𝑂 𝑓 or 𝑇 ≤ 𝑂 𝑓 or 𝑇 = 𝑂 𝑓

17

Big-𝑂 notation examples

• 3𝑛2 + 14 is 𝑂 𝑛2

• 3𝑛2 + 14 is 𝑂 𝑛2 + 𝑛

• 3𝑛2 + 14 is 𝑂 𝑛3

• 3𝑛2 + 14 is not 𝑂 𝑛1.9

18

Example: Palindromes

• Proof sketch: Recall our Turing machine that decides PALINDROMES

• At most 𝑛/2 back-and-forth passes over the input

• Each back-and-forth pass takes 𝑂 𝑛 steps

• Total time complexity: 𝑂 𝑛 ⋅ 𝑛/2 = 𝑂 𝑛2

19

Claim: There exists a Turing machine that decides

PALINDROMES with time complexity 𝑂 𝑛2 .

Optimality

• Is there a faster Turing machine that decides PALINDROMES?

• Answer: No

• Use big-Ω notation to make this precise

20

Big-Ω

• Let 𝑇, 𝑓: ℕ → 0, ∞ be any two functions

• We say that 𝑇 is Ω 𝑓 if there exist 𝑐 ∈ 0, 1 and 𝑛∗ ∈ ℕ such that

for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 ≥ 𝑐 ⋅ 𝑓 𝑛

• Example: 0.1𝑛2 + 14 is Ω 𝑛2 and Ω 𝑛 , but not Ω 𝑛3

21

Palindromes time complexity lower bound

• Let 𝑀 be a one-tape Turing machine

• (Proof omitted)

22

Theorem: If 𝑀 decides PALINDROMES, then

the time complexity of 𝑀 is Ω 𝑛2 .

Palindromes, revisited

• Proof sketch:

1. Copy the input to tape 2

2. Scan tape 1 from left to right and scan tape 2 from right to left to compare

23

Claim: There exists a two-tape Turing machine 𝑀 that

decides PALINDROMES with time complexity 𝑂 𝑛 .

Multi-tape Turing machines, revisited

• Multi-tape TMs can decide PALINDROMES in 𝑂 𝑛 time…

• But single-tape TMs require Ω 𝑛2 time!

• So multi-tape / single-tape TMs are not equivalent after all?

24

Exponential vs. polynomial

• In this course, we are not concerned with the distinction between

𝑂 𝑛 time and 𝑂 𝑛2 time

• We’re happy with either

• Our focus: The distinction between a polynomial time complexity, such

as 𝑇 𝑛 = 𝑛2, and an exponential time complexity, such as 𝑇 𝑛 = 2𝑛

• Usable vs. useless

25

Exponential vs. polynomial

• We write 𝑇 𝑛 = poly 𝑛 if there is some 𝑘 such that 𝑇 𝑛 = 𝑂 𝑛𝑘

• Exponentials grow much faster than polynomials!

• We can make this precise using little-𝑜 and little-𝜔 notation

26

Little-𝑜 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞ be any two functions

• We say that 𝑇 is 𝑜 𝑓 if for every 𝑐 ∈ 0, 1 , there exists 𝑛∗ ∈ ℕ such

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 < 𝑐 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= 0

27

Little-𝜔 notation

• Let 𝑇, 𝑓: ℕ → 0, ∞ be any two functions

• We say that 𝑇 is 𝜔 𝑓 if for every 𝐶 ∈ ℕ, there exists 𝑛∗ ∈ ℕ such

that for every 𝑛 > 𝑛∗, we have 𝑇 𝑛 > 𝐶 ⋅ 𝑓 𝑛

• Equivalent:

lim
𝑛→∞

𝑇 𝑛

𝑓 𝑛
= ∞

28

Exponential vs. polynomial

• Proof: If 𝑛 ≥ 𝑘 + 1, then

2𝑛 = # subsets of {1, 2, … , 𝑛} = ෍

𝑖=0

𝑛
𝑛
𝑖

≥
𝑛

𝑘 + 1
≥

𝑛

𝑘 + 1

𝑘+1

= Ω 𝑛𝑘+1

= 𝜔 𝑛𝑘 .

29

Claim: For every constant 𝑘 ∈ ℕ, we have 𝑛𝑘 = 𝑜 2𝑛

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Midterm exam
	Slide 3: Which problems can be solved through computation?
	Slide 4: Applying our theory
	Slide 5: Agreement graph
	Slide 6: The clique problem
	Slide 7: The clique problem
	Slide 8: The clique problem
	Slide 9: The clique problem
	Slide 10: The clique problem
	Slide 11: Our algorithm is so slow that it’s worthless
	Slide 12: Which problems can be solved through computation?
	Slide 13: Refining our model
	Slide 14: Time complexity
	Slide 15: Scaling behavior
	Slide 16: Asymptotic analysis
	Slide 17: Big-cap O notation
	Slide 18: Big-cap O notation examples
	Slide 19: Example: Palindromes
	Slide 20: Optimality
	Slide 21: Big-cap omega
	Slide 22: Palindromes time complexity lower bound
	Slide 23: Palindromes, revisited
	Slide 24: Multi-tape Turing machines, revisited
	Slide 25: Exponential vs. polynomial
	Slide 26: Exponential vs. polynomial
	Slide 27: Little-o notation
	Slide 28: Little-omega notation
	Slide 29: Exponential vs. polynomial

