CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza



Midterm exam

 Midterm exam will be in class on Friday, October 24

* To prepare for the midterm, you only need to study the material prior

to this point

* The midterm will be about Turing machines, decidability, and

undecidability



Which problems
can be solved

through computation?



Applying our theory

* Question: In the year 1988, were there 50 U.S. senators, every pair of

which voted the same way more than 50% of the time?

o Ste p 1 : G at h er d ata Please cite the dataset as:

Lewis, Jeffrey B., Keith Poole, Howard Rosenthal, Adam Boche, Aaron Rudkin, and Luke Sonnet (2025). Voteview:
Congressional Roll-Call Votes Database. https://voteview.com/

Data Type: ' v
yp Members' Votes \ o e
Chamber: | Senate Only v
; i This data includes every vote taken by every member in the
Congress: '100th (1987 - 1989) v | selected congresses and chambers along with the probability we
" ) assign to the member taking the position they did. Members are
File Format: ‘._]SON (Web Developers) v | indexed by their ICPSR ID number.

Download Data Click here for help using this data



Senator 1
Senator 2

Agreement graph

* Step 2: Construct “agreement graph”
@

Senator 3 Senator 4

* Edge {u, v} means that senators u and v

agreed on most votes

* Question: Are there 50 vertices in this graph that are all adjacent to

one another?



The cligue problem

* A k-cligueinagraph G = (V,E) isasetS € V such that |S| = k and

every two vertices in S are connected by an edge

* Example: This graph has a 4-clique

< Which of the following statements is false? >
A: Every vertex in a k-clique has B: A single graph might have
degree atleast k — 1 many k-cliques
C: If G has fewer than (’2‘) edges, D: If every vertex has degree at
then G does not have a k-clique least k — 1, then G has a k-clique

Respond at PollEv.com/whoza or text “whoza” to 22333




The cligue problem

* Let CLIQUE = {(G, k) : G has a k-clique}

* Example: Let G be the graph with the following adjacency matrix

* Does G have a 4-clique? a b cde f g
al0|1]1(0|0]|1{0O0
b|1|0|0|1|1|0]|1
c|1({0|]0|01]|]0]1
d|o0o|1|0|0|1]0]1
e(O0O|1|1|1|]0]|1]|1
f|1|/]0|0|0|21]|0]1
g(O0O|1|1(111]1]0




The cligue problem

* Let CLIQUE = {(G, k) : G has a k-clique}

* Example: Let G be the graph with the following adjacency matrix

* Does G have a 4-clique? a JON c BERNEN f 8

al0|1]1(0|0]|1{0O0

< Is CLIQUE decidable? > b|1|lojo|l1]|1]0]1

c|1({0|]0|01]|]0]1

< A: Yes >< B: No > dlo|1|oflo]1]0]1

e(O0O|1|1(1|]0|1]|1

C: It depends on whether (G) is an D: It’s not a language, so the il1lololol1lol1
adjacency matrix or adjacency list guestion doesn’t make sense

g(O0|1|1(1|11]1]0

Respond at PollEv.com/whoza or text “whoza” to 22333




The clique problem

* Let CLIQUE = {(G, k) : G has a k-clique}
* Claim: CLIQUE is decidable

* Proof sketch: Given (G, k) where G = (V,E), try all possible subsets S €V

* Check whether |S| =k

* Check whether {u, v} € E for every u,v € S such thatu # v

* If we find a k-clique, accept; otherwise, reject.



The cligue problem

* Question: In the year 1988, were there 50 U.S. senators, every pair of

which voted the same way more than 50% of the time?
e Step 1: Gather data
e Step 2: Construct agreement graph «

 Step 3: Apply CLIQUE algorithm
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Our algorithm is so slow that it’s worthless

* Question: In the year 1988, were there 50 U.S. senators, every pair

of which voted the same way more than 50% of the time?

* Checking all possible sets of senators would take longer than a

lifetime!

* One begins to feel that CLIQUE might as well be undecidable!

11



Which problems
can be solved

through computation?



Refining our model

e Our model so far: Decidable vs. undecidable

* Now we will refine our model

* We only have a limited amount of time (and other resources)

e “Complexity theory” vs. “Computability theory”

13



Time complexity

* Let M be a Turing machine

* The time complexity of M is a function 7;,: N — N

Tyy(n) = max _(running time of M on w)
we{0,1}"

* We focus on the worst-case n-bit input

14



Scaling behavior

* We focus on the limiting behavior of T);(n) asn — oo

* How “quickly” does the running time increase when we consider larger

and larger inputs?
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Asymptotic analysis

* Two possible time complexities:

Tl(n) — 3n2 + 14‘

T,(n) = 2n? + 64n + |\/n|
* When n is large, the leading C - n® term dominates

* We will ignore the low-order terms and the leading coefficient C

* We focus on the n? part (“quadratic time”)

16



Big-O notation

*letT,f:N — [0, 0) be any two functions

* Definition: We say that T is O(f) if there exist C,n, € N such that for

everyn >n,,wehaveT(n) < C - f(n)

* Notation: T € O(f) orT < O(f) orT = O(f)

17



Big-O notation examples

e 3n? + 14 is 0(n?)
e 3n% + 14 is 0(n? + n)
e 3n? + 14 is 0(n?)

e 3n?% + 14 is not 0(n'?)

18



Exa m p | e : Pa | i n d rO m eS #11:200011010011110010110001 226

Claim: There exists a Turing machine that decides

PALINDROMES with time complexity O (n?).

* Proof sketch: Recall our Turing machine that decides PALINDROMES
* At most n/2 back-and-forth passes over the input
 Each back-and-forth pass takes O(n) steps

e Total time complexity: 0(n) - n/2 = 0(n?)

19



Optimality

* |s there a faster Turing machine that decides PALINDROMES?

e Answer: No

* Use big-() notation to make this precise

20



Big-()

*LletT,f:N — [0, 0) be any two functions

* We say that T is (U(f) if there exist ¢ € (0,1) and n, € N such that

foreveryn > n,,wehaveT(n) = c- f(n)

e Example: 0.1n% + 14 is Q(n?) and Q(n), but not Q(n?)

21



Palindromes time complexity lower bound

* Let M be a one-tape Turing machine

Theorem: If M decides PALINDROMES, then

the time complexity of M is Q.(n?).

* (Proof omitted)
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Palindromes, revisited

Claim: There exists a two-tape Turing machine M that

decides PALINDROMES with time complexity O(n).

* Proof sketch:

1. Copy the input to tape 2

2. Scan tape 1 from left to right and scan tape 2 from right to left to compare

23



Multi-tape Turing machines, revisited

* Multi-tape TMs can decide PALINDROMES in O(n) time...
* But single-tape TMs require Q(n?) time!

* So multi-tape / single-tape TMs are not equivalent after all?

24



Exponential vs. polynomial

* |n this course, we are not concerned with the distinction between
O(n) time and 0(n?) time
 We're happy with either
e Our focus: The distinction between a polynomial time complexity, such

as T(n) = n?, and an exponential time complexity, such as T(n) = 2"

 Usable vs. useless

25



Exponential vs. polynomial

* We write T(n) = poly(n) if there is some k such that T(n) = O(nk)
* Exponentials grow much faster than polynomials!

* We can make this precise using little-o and little-w notation

26



Little-o notation

*LletT,f:N — [0, ) be any two functions

* We say that T"is o(f) if for every ¢ € (0, 1), there exists n, € N such

that for everyn > n,, wehaveT(n) < c- f(n)

* Equivalent:

T(n
llm(—) 0

n-co f(n)

27



Little-w notation

*LletT,f:N — [0, 0) be any two functions

* We say that T is w(f) if for every C € N, there exists n, € N such

that for everyn > n,, wehave T(n) > C - f(n)

e Equivalent:

T(n)
lim ——

noo f(n)

28



Exponential vs. polynomial

Claim: For every constant k € N, we have n® = 0(2")

* Proof: If n = k + 1, then

M — # cubsets of (1.2 _Zn:(n)>(n)>(n)k+1
= # subsets of {1, 2, ...,n} = 1)~ \k+1)  \k+1

=0
— .Q.(le+1)

= w(n").
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