
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

Which problems

can be solved

through computation?

2

What are Turing machines

capable of?

3

Which languages are decidable?

4

The halting problem

• Informal problem statement: Given a Turing machine 𝑀 and an input

𝑤, determine whether 𝑀 halts on 𝑤.

• The same problem, formulated as a language:

HALT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on input 𝑤

• It’s the problem of identifying bugs in someone else’s code!

5

?

Attempting to decide HALT

• Given 𝑀, 𝑤 :

1. Simulate 𝑀 on 𝑤

2. If it halts, accept

3. Otherwise, reject

6

Does the proposed algorithm work?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: No. There are inputs for which
it should accept, but it doesn’t

A: No. It’s not necessarily possible
to simulate 𝑀 on 𝑤

D: Yes. HALT is decidable
C: No. There are inputs for which
it should reject, but it doesn’t

?

The halting problem is undecidable

• HALT = { 𝑀, 𝑤 : 𝑀 is a Turing machine that halts on 𝑤}

• How should we prove it?

7

Theorem: HALT is undecidable

?

Reductions

• We already proved that SELF-REJECTORS is

undecidable

• Plan: Let’s show that if HALT were decidable, then SELF-REJECTORS

would also be decidable – a contradiction

• “Reduction from SELF-REJECTORS to HALT”

8

Proof that HALT is undecidable

• Assume for the sake of contradiction that there is

some Turing machine 𝐻 that decides HALT

• Let’s construct a new TM 𝑆 that decides SELF-REJECTORS

9

Given the input 𝑀 :

1. Simulate 𝐻 on 𝑀, 𝑀

2. If 𝐻 rejects, reject. Otherwise:

3. Simulate 𝑀 on 𝑀

4. If 𝑀 rejects, accept; if 𝑀 accepts, reject.

𝑆

• If 𝑀 loops on 𝑀 , then 𝐻

rejects, so 𝑆 rejects

• If 𝑀 accepts 𝑀 , then 𝐻

accepts and 𝑀 accepts, so 𝑆

rejects

• If 𝑀 rejects 𝑀 , then 𝐻

accepts and 𝑀 rejects, so 𝑆

accepts

Reductions

• Our goal was to prove that HALT is undecidable

• Our strategy was to design an algorithm for deciding SELF-REJECTORS!

(using a hypothetical device that decides HALT)

• The existence of one algorithm implies the non-existence of another!

10

Note on standards of rigor

• Going forward, when we want to construct a Turing machine (e.g., for a

reduction), we will simply describe what it does in plain English

• As if we were giving instructions to a human being

• Plain English description can be formalized as a Turing machine, but this is tedious

• You should follow this convention on Exercise 8 and beyond

11

Given the input 𝑀 :

1. Simulate 𝐻 on 𝑀, 𝑀

2. If 𝐻 rejects, reject. Otherwise:

3. Simulate 𝑀 on 𝑀

4. If 𝑀 rejects, accept; if 𝑀 accepts, reject.

Undecidability

• Now we have two examples of undecidable

languages

• SELF-REJECTORS and HALT

• Next, we will see an example of an undecidable language that

(seemingly) isn’t about Turing machines

12

Post’s Correspondence Problem

• Given: A list of “dominos” , , , ⋯ , , where

𝑡𝑖 , 𝑏𝑖 ∈ Γ∗ for some alphabet Γ

• Goal: Determine whether it is possible to construct a “match”

• A “match” is a sequence of dominos

such that 𝑡𝑖1
𝑡𝑖2

⋯ 𝑡𝑖𝑛
= 𝑏𝑖1

𝑏𝑖2
⋯ 𝑏𝑖𝑛

• Using the same domino multiple times is permitted

13

𝑡1

𝑏1

𝑡2

𝑏2

𝑡3

𝑏3

𝑡𝑘

𝑏𝑘

𝑡𝑖1

𝑏𝑖1

𝑡𝑖2

𝑏𝑖2

𝑡𝑖3

𝑏𝑖3

𝑡𝑖4

𝑏𝑖4

𝑡𝑖5

𝑏𝑖5

𝑡𝑖𝑛

𝑏𝑖𝑛

⋯

Post’s Correspondence Problem: Example 1

• Suppose we are given

• This is a YES case. Match:

14

0
1

1
0

111
1

0
000

111
1

0
1

0
1

0
000

← 111000
← 111000

Post’s Correspondence Problem: Example 2

• Suppose we are given

• This is a YES case. Match:

15

← 3 + 4 = 2 + 5 = 1 + 6 = 7
← 3 + 4 = 2 + 5 = 1 + 6 = 7

3 +
3 + 4 =

4 = 2
2 + 5

+5 =
= 1 +

1 +
6 =

6 = 7
7

3 +
3 + 4 =

4 = 2
2 + 5

+5 =
= 1 +

1 +
6 =

6 = 7
7

4 =
1 + 6

Post’s Correspondence Problem: Example 3

• Suppose we are given

• This is a NO case

• Proof: A match would have to start with …

• …which means there will always be more $ symbols on the bottom

than on the top

16

#
#$

#$#
$#

$
#$

#
#$

Post’s Correspondence Problem is undecidable

• Post’s correspondence problem, formulated as a language:

PCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• Proof on the upcoming 18 slides. Outline:

• Step 1: Reduce HALT to a modified version (“MPCP”)

• Step 2: Reduce MPCP to PCP

17

Theorem: PCP is undecidable

Modified PCP

MPCP = { 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘 ∶ ∃𝑖1, … , 𝑖𝑛 such that 𝑡1𝑡𝑖1
⋯ 𝑡𝑖𝑛

= 𝑏1𝑏𝑖1
⋯ 𝑏𝑖𝑛

}

• New feature: In MPCP, matches must start with the first domino

• We’ll use a double outline to indicate the special first domino:

18

𝑡1

𝑏1

Lemma: MPCP is undecidable

Proof that MPCP is undecidable

• Assume there is a TM 𝑃 that decides MPCP

• Let’s construct a new TM 𝐻 that decides HALT

19

Given 𝑀, 𝑤 :

1. Construct dominos 𝑡1, … , 𝑡𝑘 , 𝑏1, … 𝑏𝑘 based on 𝑀 and 𝑤

(details on upcoming slides)

2. Simulate 𝑃 on 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

3. If 𝑃 accepts, accept. If 𝑃 rejects, reject.

𝐻

Reducing HALT to MPCP

• We are given ⟨𝑀, 𝑤⟩, where

𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿

• Our job is to produce a collection of dominos

• Plan: Produce dominos such that constructing a match is equivalent to

constructing a halting computation history

20

𝜖
(𝑞0 ⊔ 𝑤)

(𝑞accept)
𝜖

(
(

)
)

(𝑞reject)
𝜖

The dominos for 𝑀, 𝑤

• , , , , and

• For every 𝑞 ∈ 𝑄 ∖ 𝑞accept, 𝑞reject and every 𝑏 ∈ Σ:

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, R , we include , and we include for every 𝑎 ∈ Σ

• If 𝛿 𝑞, 𝑏 = 𝑞′, 𝑏′, L , we include , and we include for every 𝑎 ∈ Σ

• , , , , and for every 𝑏 ∈ Σ

21

𝑞𝑏)

𝑏′𝑞′ ⊔)

𝑞𝑏𝑎

𝑏′𝑞′𝑎

𝑎𝑞𝑏

𝑞′𝑎𝑏′

(𝑞𝑏

(𝑞′ ⊔ 𝑏′

Given ⟨𝑀, 𝑤⟩, how does one construct these dominos?

Respond at PollEv.com/whoza or text “whoza” to 22333

C: There is no algorithm for
constructing the dominos

A: Simulate 𝑀 on 𝑤. If it accepts,
accept; if it rejects, reject

B: Simulate 𝑀 on 𝑤 and copy
whatever dominos it produces

D: Inspect the transition function
of 𝑀

𝑏
𝑏

𝑏𝑞accept

𝑞accept

𝑞accept𝑏
𝑞accept

𝑏𝑞reject

𝑞reject

𝑞reject𝑏
𝑞reject

Proof that MPCP is undecidable

• Assume there is a TM 𝑃 that decides MPCP

• Let’s construct a new TM 𝐻 that decides HALT

22

Given 𝑀, 𝑤 :

1. Construct dominos 𝑡1, … , 𝑡𝑘 , 𝑏1, … 𝑏𝑘 based on 𝑀 and 𝑤

(details on preceding slides)

2. Simulate 𝑃 on 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

3. If 𝑃 accepts, accept. If 𝑃 rejects, reject.

𝐻

Need to show:

• If 𝑀 halts on 𝑤, then

there is a match

• If there is a match,

then 𝑀 halts on 𝑤

Domino Feature 1

• Domino Feature 1: For every non-halting configuration 𝐶 of 𝑀, there

is a sequence of dominos such that the top string is 𝐶 and bottom

string is NEXT 𝐶

• Proof omitted, but here’s an example:

• Think of this sequence as one “super-domino”

23

𝐶

NEXT 𝐶

(
(

0
0

1
1

)
)

#
#

0
0

0𝑞10
𝑞201

0
1

⊔
⊔

If 𝑀 halts on 𝑤, then there is a match

• Let 𝐶0, … , 𝐶𝑇 be the halting computation history of 𝑀 on 𝑤

• Partial match:

• At this point, we have an extra 𝐶𝑇 on the bottom

24

(𝐶0)

𝐶1

(𝐶1)

𝐶2
⋯

(𝐶𝑇−1)

𝐶𝑇

𝜖
(𝐶0)

Domino Feature 2

• Domino Feature 2: For every halting configuration 𝐷, there is a

sequence of dominos such that the top string is 𝐷 and the bottom

string is 𝐷′ , where 𝐷′ is a halting configuration* of length 𝐷 − 1

• *Possibly 𝐷′ = 𝑞accept or 𝑞reject by itself

• Proof omitted, but here’s an example:

• Think of this sequence as one “super domino”

25

𝐷
𝐷′

(
(

0
0

1
1

)
)

#
#

0
0

0
1

⊔
⊔

0𝑞reject

𝑞reject

If 𝑀 halts on 𝑤, then there is a match

• We construct a sequence of shorter and shorter halting configurations

𝐶𝑇 = 𝐷0, 𝐷1, … , 𝐷𝑛 such that 𝐷𝑛 = 1 and we have a super-domino

for every 𝑖

• Full match:

26

(𝐷𝑖−1)

𝐷𝑖

(𝐶0)

𝐶1

(𝐶1)

𝐶2
⋯

(𝐶𝑇−1)

𝐶𝑇

𝜖
(𝐶0)

(𝐶𝑇)
(𝐷1)

(𝐷1)
(𝐷2)

(𝐷2)
(𝐷3)

⋯
(𝐷𝑛−1)

(𝐷𝑛)
(𝐷𝑛)

𝜖

Proof that MPCP is undecidable

• Assume there is a TM 𝑃 that decides MPCP

• Let’s construct a new TM 𝐻 that decides HALT

27

Given 𝑀, 𝑤 :

1. Construct dominos 𝑡1, … , 𝑡𝑘 , 𝑏1, … 𝑏𝑘 based on 𝑀 and 𝑤

(details on preceding slides)

2. Simulate 𝑃 on 𝑡1, … , 𝑡𝑘 , 𝑏1, … , 𝑏𝑘

3. If 𝑃 accepts, accept. If 𝑃 rejects, reject.

𝐻

Need to show:

• If 𝑀 halts on 𝑤, then

there is a match

• If there is a match,

then 𝑀 halts on 𝑤

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: Which problems can be solved through computation?
	Slide 3: What are Turing machines capable of?
	Slide 4: Which languages are decidable?
	Slide 5: The halting problem
	Slide 6: Attempting to decide HALT
	Slide 7: The halting problem is undecidable
	Slide 8: Reductions
	Slide 9: Proof that HALT is undecidable
	Slide 10: Reductions
	Slide 11: Note on standards of rigor
	Slide 12: Undecidability
	Slide 13: Post’s Correspondence Problem
	Slide 14: Post’s Correspondence Problem: Example 1
	Slide 15: Post’s Correspondence Problem: Example 2
	Slide 16: Post’s Correspondence Problem: Example 3
	Slide 17: Post’s Correspondence Problem is undecidable
	Slide 18: Modified PCP
	Slide 19: Proof that MPCP is undecidable
	Slide 20: Reducing HALT to MPCP
	Slide 21: The dominos for open angle bracket cap M ,w close angle bracket
	Slide 22: Proof that MPCP is undecidable
	Slide 23: Domino Feature 1
	Slide 24: If cap M halts on w, then there is a match
	Slide 25: Domino Feature 2
	Slide 26: If cap M halts on w, then there is a match
	Slide 27: Proof that MPCP is undecidable

