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TMs can simulate all “reasonable” machines

 We could add various bells and whistles to the basic TM model

* Left-right-stationary Turing machines

* Multi-tape Turing machines ,. ﬂ

* A Turing machine with a two-dimensional tape

* None of these changes has any effect on the power of the model



The Church-Turing Thesis

e letY € {0,1}

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring +<—— Intuitive notion
out whether a given string isin Y if and only if there

. . . . Mathematically
exists a Turing machine that decides Y. T precise notion




Turing machines vs. your laptop

 OBJECTION:
e “Each individual Turing machine can only solve one problem.

* My laptop is a single device that can run arbitrary computations.

* Therefore, Turing machines don’t properly model my laptop.”

K Email machine?? ZoonGerehahpdPpose compates machine?? Photoshop machine?? /




Code as data

* The response to this objection is based on the “code as data” idea
* A Turing machine M can be encoded as a binary string (M)

* Plan: We will show how to simulate a Turing machine M, given its

encoding (M)



Universal Turing machines

Theorem: There exists a Turing machine U such that for every
Turing machine M and every input w € {0, 1}*:

* If M accepts w, then U accepts (M, w).

* If M rejects w, then U rejects (M, w).

* If M loops on w, then U loops on (M, w).

* One super-algorithm that contains all other algorithms inside it!




Example: Exercise 3
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Autograder Results [

1) Inputs that are not edge cases (0/3)

Test Failed: 'Accept' != 'Reject'
— Accept
+ Reject

Your Turing machine behaves incorrectly

2) Edge case: Strings of zeroes (0/0.5)

Test Failed: 'Timeout' != 'Reject'
- Timeout
+ Reject

Your Turing machine behaves incorrectly
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Universal Turing machines

Theorem: There exists a single Turing machine U such that for every
Turing machine M and every input w € {0, 1}*:

* If M accepts w, then U accepts (M, w).

* If M rejects w, then U rejects (M, w).

* If M loops on w, then U loops on (M, w).

* To properly prove it, we need to clarify how (M) is defined




Encoding a Turing machine as a string

* To encode a Turing machine M = (Q, d0, Qaccepts rejects 2L, 5):
« WLOG, |Q| = |Z| = 2¥ forsome k € N
* WLOG, Q = {0,1}", g9 = 0%, qaccept = 1%, and greject = 01%71
* Encode b € T as (b) € {0, 1}*, with (0) = 0%, (1) = 10*71, and (u) = 1*
* Encode (q,b,D) € Q X X x {L,R}as{q,b,d) = q(b}{D) € {0, 1}2k+1
* Then (M) = 1%0(5), where (8) is the list of (6(g, b)) forall (g,b) € Q X =



Universal Turing machines

Theorem: There exists a single Turing machine U such that for every
Turing machine M and every input w € {0, 1}*:

* If M accepts w, then U accepts (M, w) := (M)w.

* |If M rejects w, then U rejects (M, w).

* If M loops on w, then U loops on (M, w).

* Proof sketch: Next two slides
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1%0(8)w

Initializing the simulation A
do
A
e« Uis given (M, w) = 1%0(5)w <5>
A

* Initialize a tape containing g, = 0*

(Wi Xwy) ... {wp)

A

* |nitialize a tape containing (&)

* Note: [(§)] = 2% - (2k + 1). Can compute using binary counter

* Initialize a tape containing (W }w,) ...(w,,)

* Note: <Wl> = Wl'()k_1
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1%0(85)w

Advancing the simulation

A

q

A

* Until the simulation reaches a halt state:

(6)

A

1. Find (6(q, b;)) = (q’, b’, D) within (&)

i {bi— o XD  Xbi Dis 1 XD 42) ...

* Idea: Treat g(b;) as a number N in binary

* Use a binary counter to go to position N - (2k + 1)
2. Replace g with g’ and replace (b;) with (b")

3. Move this head k cells in direction D

A
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Interpretation of universal Turing machines

* One piece of “hardware” that can run arbitrary “software”
* It’s a general-purpose, programmable computer
* This is why you don’t need a separate laptop for each task

* If you want to build a computer from scratch
in some post-apocalyptic future, then your

job is to build a universal Turing machine
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The Church-Turing Thesis

e letY € {0,1}

Church-Turing Thesis:
There exists an “algorithm” / “procedure” for figuring
out whether a given string isin Y if and only if there

exists a Turing machine that decides Y.

<«— |ntuitive notion

Mathematically
precise notion
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Humans vs. technology

* OBJECTION: “The Turing machine model is based on paper-and-pencil
computation. Maybe we can solve undecidable problems using

advanced science and technology!”
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Hypercomputers

* A hypercomputer is a hypothetical device that
can solve some computational problem that cannot

be solved by Turing machines, such as SELF-REJECTORS
* Could it be possible to build a hypercomputer?

* We could try using quantum physics, antimatter, black holes, dark

energy, superconductors, wormholes, closed timelike curves, ...
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The Physical Church-Turing Thesis

e letY € {0,1}

Physical Church-Turing Thesis:
It is physically possible to build a device that decides Y if

and only if there exists a Turing machine that decides Y.
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The Physical Church-Turing Thesis

* The standard Church-Turing thesis is a philosophical statement
* The Physical Church-Turing thesis is a scientific law

* Conceivably, it could be disproven by future discoveries... but that would

be very surprising
* Analogy: Second Law of Thermodynamics

* Analogy: Cannot travel faster than the speed of light
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Which problems
can be solved

through computation?



What are Turing machines

capable of?



Which languages are decidable?



Contrived vs. natural

« SELF-REJECTORS = {{M) : M is a self-rejecting Turing machine}
* We proved that SELF-REJECTORS is undecidable
* OBJECTION: “SELF-REJECTORS seems like a very contrived example.”

* RESPONSE: There are other undecidable languages that are

natural/well-motivated/interesting!
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The halting problem

* Informal problem statement: Given a Turing machine M and an input

w, determine whether M halts on w.

* The same problem, formulated as a language:

HALT = {{M,w) : M is a Turing machine that halts on input w}

* It’s the problem of identifying bugs in someone else’s code!
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Attempting to decide HALT

* Given (M, w): <

Does the proposed algorithm work?

to simulate M on w

1. Simulate M onw <A: No. It’s not necessarily possibl

e B: No. There are inputs for which
it should accept, but it doesn’t

2. Ifit halts, accept

C: No. There are inputs for which
it should reject, but it doesn’t

>< D: Yes. HALT is decidable

3. Otherwise, reject

D
>
D

Respond at PollEv.com/whoza or text “whoza” to 22333
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