
1

CMSC 28100

Introduction to
Complexity Theory

Autumn 2025
Instructor: William Hoza

TMs can simulate all “reasonable” machines

• We could add various bells and whistles to the basic TM model

• Left-right-stationary Turing machines

• Multi-tape Turing machines

• A Turing machine with a two-dimensional tape

• None of these changes has any effect on the power of the model

2

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

3

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Turing machines vs. your laptop

• OBJECTION:

• “Each individual Turing machine can only solve one problem.

• My laptop is a single device that can run arbitrary computations.

• Therefore, Turing machines don’t properly model my laptop.”

4

Email machine?? Zoom machine?? Tetris machine?? Photoshop machine??General purpose computer

Code as data

• The response to this objection is based on the “code as data” idea

• A Turing machine 𝑀 can be encoded as a binary string 𝑀

• Plan: We will show how to simulate a Turing machine 𝑀, given its

encoding 𝑀

5

Universal Turing machines

6

Theorem: There exists a Turing machine 𝑈 such that for every

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• One super-algorithm that contains all other algorithms inside it!

Example: Exercise 3

7

… {"a": {"0": ["a", "_", "R"], "1": ["b",
"_", "R"], "_": ["c", "_", "R"], "#": ["d",
"_", "R"], "$": null, "&": null, "%": null,
"@": null}, "b": {"0": ["y", "0", "R"], "1":
["b", "0", "R"], "_": ["c", "1", "R"], "#":
["d", …

⇓

⇓ ⇑

⇒

𝑀

𝑀

≈ 𝑈

Universal Turing machines

8

Theorem: There exists a single Turing machine 𝑈 such that for every

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• To properly prove it, we need to clarify how 𝑀 is defined

Encoding a Turing machine as a string

• To encode a Turing machine 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 :

• WLOG, 𝑄 = Σ = 2𝑘 for some 𝑘 ∈ ℕ

• WLOG, 𝑄 = 0, 1 𝑘, 𝑞0 = 0𝑘, 𝑞accept = 1𝑘, and 𝑞reject = 01𝑘−1

• Encode 𝑏 ∈ Σ as 𝑏 ∈ 0, 1 𝑘, with 0 = 0𝑘, 1 = 10𝑘−1, and ⊔ = 1𝑘

• Encode 𝑞, 𝑏, 𝐷 ∈ 𝑄 × Σ × L, R as 𝑞, 𝑏, 𝑑 = 𝑞 𝑏 𝐷 ∈ 0, 1 2𝑘+1

• Then 𝑀 = 1𝑘0 𝛿 , where 𝛿 is the list of ⟨𝛿 𝑞, 𝑏 ⟩ for all 𝑞, 𝑏 ∈ 𝑄 × Σ

9

Universal Turing machines

10

Theorem: There exists a single Turing machine 𝑈 such that for every

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts 𝑀, 𝑤 ≔ 𝑀 𝑤.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• Proof sketch: Next two slides

Initializing the simulation

• 𝑈 is given 𝑀, 𝑤 = 1𝑘0 𝛿 𝑤

• Initialize a tape containing 𝑞0 = 0𝑘

• Initialize a tape containing 𝛿

• Note: 𝛿 = 22𝑘 ⋅ 2𝑘 + 1 . Can compute using binary counter

• Initialize a tape containing 𝑤1 𝑤2 … 𝑤𝑛

• Note: 𝑤𝑖 = 𝑤𝑖0𝑘−1

11

𝑤1 𝑤2 … ⟨𝑤𝑛⟩

𝛿

𝑞0

1𝑘0 𝛿 𝑤

Advancing the simulation

• Until the simulation reaches a halt state:

1. Find 𝛿 𝑞, 𝑏𝑖 = 𝑞′, 𝑏′, 𝐷 within 𝛿

• Idea: Treat 𝑞 𝑏𝑖 as a number 𝑁 in binary

• Use a binary counter to go to position 𝑁 ⋅ 2𝑘 + 1

2. Replace 𝑞 with 𝑞′ and replace 𝑏𝑖 with 𝑏′

3. Move this head 𝑘 cells in direction 𝐷
12

𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …

1𝑘0 𝛿 𝑤

Interpretation of universal Turing machines

• One piece of “hardware” that can run arbitrary “software”

• It’s a general-purpose, programmable computer

• This is why you don’t need a separate laptop for each task

• If you want to build a computer from scratch

in some post-apocalyptic future, then your

job is to build a universal Turing machine

13

The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

14

Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring

out whether a given string is in 𝑌 if and only if there

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically
precise notion

Humans vs. technology

• OBJECTION: “The Turing machine model is based on paper-and-pencil

computation. Maybe we can solve undecidable problems using

advanced science and technology!”

15

Hypercomputers

• A hypercomputer is a hypothetical device that

can solve some computational problem that cannot

be solved by Turing machines, such as SELF-REJECTORS

• Could it be possible to build a hypercomputer?

• We could try using quantum physics, antimatter, black holes, dark

energy, superconductors, wormholes, closed timelike curves, …

16

The Physical Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗

17

Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝑌 if

and only if there exists a Turing machine that decides 𝑌.

The Physical Church-Turing Thesis

• The standard Church-Turing thesis is a philosophical statement

• The Physical Church-Turing thesis is a scientific law

• Conceivably, it could be disproven by future discoveries… but that would

be very surprising

• Analogy: Second Law of Thermodynamics

• Analogy: Cannot travel faster than the speed of light

18

Which problems

can be solved

through computation?

19

What are Turing machines

capable of?

20

Which languages are decidable?

21

Contrived vs. natural

• SELF-REJECTORS = { 𝑀 ∶ 𝑀 is a self-rejecting Turing machine}

• We proved that SELF-REJECTORS is undecidable

• OBJECTION: “SELF-REJECTORS seems like a very contrived example.”

• RESPONSE: There are other undecidable languages that are

natural/well-motivated/interesting!

22

The halting problem

• Informal problem statement: Given a Turing machine 𝑀 and an input

𝑤, determine whether 𝑀 halts on 𝑤.

• The same problem, formulated as a language:

HALT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on input 𝑤

• It’s the problem of identifying bugs in someone else’s code!

23

?

Attempting to decide HALT

• Given 𝑀, 𝑤 :

1. Simulate 𝑀 on 𝑤

2. If it halts, accept

3. Otherwise, reject

24

Does the proposed algorithm work?

Respond at PollEv.com/whoza or text “whoza” to 22333

B: No. There are inputs for which
it should accept, but it doesn’t

A: No. It’s not necessarily possible
to simulate 𝑀 on 𝑤

D: Yes. HALT is decidable
C: No. There are inputs for which
it should reject, but it doesn’t

?

	Slide 1: CMSC 28100 Introduction to Complexity Theory Autumn 2025 Instructor: William Hoza
	Slide 2: TMs can simulate all “reasonable” machines
	Slide 3: The Church-Turing Thesis
	Slide 4: Turing machines vs. your laptop
	Slide 5: Code as data
	Slide 6: Universal Turing machines
	Slide 7: Example: Exercise 3
	Slide 8: Universal Turing machines
	Slide 9: Encoding a Turing machine as a string
	Slide 10: Universal Turing machines
	Slide 11: Initializing the simulation
	Slide 12: Advancing the simulation
	Slide 13: Interpretation of universal Turing machines
	Slide 14: The Church-Turing Thesis
	Slide 15: Humans vs. technology
	Slide 16: Hypercomputers
	Slide 17: The Physical Church-Turing Thesis
	Slide 18: The Physical Church-Turing Thesis
	Slide 19: Which problems can be solved through computation?
	Slide 20: What are Turing machines capable of?
	Slide 21: Which languages are decidable?
	Slide 22: Contrived vs. natural
	Slide 23: The halting problem
	Slide 24: Attempting to decide HALT

