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TMs can simulate all “reasonable” machines

• We could add various bells and whistles to the basic TM model

• Left-right-stationary Turing machines

• Multi-tape Turing machines

• A Turing machine with a two-dimensional tape

• None of these changes has any effect on the power of the model
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Turing machines vs. your laptop

• OBJECTION:

• “Each individual Turing machine can only solve one problem.

• My laptop is a single device that can run arbitrary computations.

• Therefore, Turing machines don’t properly model my laptop.”
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Email machine?? Zoom machine?? Tetris machine?? Photoshop machine??General purpose computer



Code as data

• The response to this objection is based on the “code as data” idea

• A Turing machine 𝑀 can be encoded as a binary string 𝑀

• Plan: We will show how to simulate a Turing machine 𝑀, given its 

encoding 𝑀
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Universal Turing machines
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Theorem: There exists a Turing machine 𝑈 such that for every 

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• One super-algorithm that contains all other algorithms inside it!



Example: Exercise 3
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… {"a": {"0": ["a", "_", "R"], "1": ["b", 
"_", "R"], "_": ["c", "_", "R"], "#": ["d", 
"_", "R"], "$": null, "&": null, "%": null, 
"@": null}, "b": {"0": ["y", "0", "R"], "1": 
["b", "0", "R"], "_": ["c", "1", "R"], "#": 
["d", …

⇓

⇓ ⇑

⇒

𝑀

𝑀

≈ 𝑈



Universal Turing machines

8

Theorem: There exists a single Turing machine 𝑈 such that for every 

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts ⟨𝑀, 𝑤⟩.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• To properly prove it, we need to clarify how 𝑀  is defined



Encoding a Turing machine as a string

• To encode a Turing machine 𝑀 = 𝑄, 𝑞0, 𝑞accept, 𝑞reject, Σ,⊔, 𝛿 :

• WLOG, 𝑄 = Σ = 2𝑘 for some 𝑘 ∈ ℕ

• WLOG, 𝑄 = 0, 1 𝑘, 𝑞0 = 0𝑘, 𝑞accept = 1𝑘, and 𝑞reject = 01𝑘−1

• Encode 𝑏 ∈ Σ as 𝑏 ∈ 0, 1 𝑘, with 0 = 0𝑘, 1 = 10𝑘−1, and ⊔ = 1𝑘

• Encode 𝑞, 𝑏, 𝐷 ∈ 𝑄 × Σ × L, R  as 𝑞, 𝑏, 𝑑 = 𝑞 𝑏 𝐷 ∈ 0, 1 2𝑘+1

• Then 𝑀 = 1𝑘0 𝛿 , where 𝛿  is the list of ⟨𝛿 𝑞, 𝑏 ⟩ for all 𝑞, 𝑏 ∈ 𝑄 × Σ
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Universal Turing machines
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Theorem: There exists a single Turing machine 𝑈 such that for every 

Turing machine 𝑀 and every input 𝑤 ∈ 0, 1 ∗:

• If 𝑀 accepts 𝑤, then 𝑈 accepts 𝑀, 𝑤 ≔ 𝑀 𝑤.

• If 𝑀 rejects 𝑤, then 𝑈 rejects ⟨𝑀, 𝑤⟩.

• If 𝑀 loops on 𝑤, then 𝑈 loops on ⟨𝑀, 𝑤⟩.

• Proof sketch: Next two slides



Initializing the simulation

• 𝑈 is given 𝑀, 𝑤 = 1𝑘0 𝛿 𝑤

• Initialize a tape containing 𝑞0 = 0𝑘

• Initialize a tape containing 𝛿

• Note: 𝛿 = 22𝑘 ⋅ 2𝑘 + 1 . Can compute using binary counter

• Initialize a tape containing 𝑤1 𝑤2 … 𝑤𝑛

• Note: 𝑤𝑖 = 𝑤𝑖0𝑘−1
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𝑤1 𝑤2 … ⟨𝑤𝑛⟩

𝛿

𝑞0

1𝑘0 𝛿 𝑤



Advancing the simulation

• Until the simulation reaches a halt state:

1. Find 𝛿 𝑞, 𝑏𝑖 = 𝑞′, 𝑏′, 𝐷  within 𝛿

• Idea: Treat 𝑞 𝑏𝑖  as a number 𝑁 in binary

• Use a binary counter to go to position 𝑁 ⋅ 2𝑘 + 1

2. Replace 𝑞 with 𝑞′ and replace 𝑏𝑖  with 𝑏′

3. Move this head 𝑘 cells in direction 𝐷
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𝛿

𝑞

… 𝑏𝑖−2 𝑏𝑖−1 𝑏𝑖 𝑏𝑖+1 𝑏𝑖+2 …

1𝑘0 𝛿 𝑤



Interpretation of universal Turing machines

• One piece of “hardware” that can run arbitrary “software”

• It’s a general-purpose, programmable computer

• This is why you don’t need a separate laptop for each task

• If you want to build a computer from scratch

in some post-apocalyptic future, then your

job is to build a universal Turing machine
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The Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Church-Turing Thesis:

There exists an “algorithm” / “procedure” for figuring 

out whether a given string is in 𝑌 if and only if there 

exists a Turing machine that decides 𝑌.

Intuitive notion

Mathematically 
precise notion



Humans vs. technology

• OBJECTION: “The Turing machine model is based on paper-and-pencil 

computation. Maybe we can solve undecidable problems using 

advanced science and technology!”
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Hypercomputers

• A hypercomputer is a hypothetical device that

can solve some computational problem that cannot

be solved by Turing machines, such as SELF-REJECTORS

• Could it be possible to build a hypercomputer?

• We could try using quantum physics, antimatter, black holes, dark 

energy, superconductors, wormholes, closed timelike curves, …
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The Physical Church-Turing Thesis

• Let 𝑌 ⊆ 0, 1 ∗
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Physical Church-Turing Thesis:

It is physically possible to build a device that decides 𝑌 if 

and only if there exists a Turing machine that decides 𝑌.



The Physical Church-Turing Thesis

• The standard Church-Turing thesis is a philosophical statement

• The Physical Church-Turing thesis is a scientific law

• Conceivably, it could be disproven by future discoveries… but that would 

be very surprising

• Analogy: Second Law of Thermodynamics

• Analogy: Cannot travel faster than the speed of light

18



Which problems

can be solved

through computation?
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What are Turing machines

capable of?
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Which languages are decidable?
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Contrived vs. natural

• SELF-REJECTORS = { 𝑀 ∶ 𝑀 is a self-rejecting Turing machine}

• We proved that SELF-REJECTORS is undecidable

• OBJECTION: “SELF-REJECTORS seems like a very contrived example.”

• RESPONSE: There are other undecidable languages that are 

natural/well-motivated/interesting!
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The halting problem

• Informal problem statement: Given a Turing machine 𝑀 and an input 

𝑤, determine whether 𝑀 halts on 𝑤.

• The same problem, formulated as a language:

HALT = 𝑀, 𝑤 ∶ 𝑀 is a Turing machine that halts on input 𝑤

• It’s the problem of identifying bugs in someone else’s code! 
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?



Attempting to decide HALT

• Given 𝑀, 𝑤 :

1. Simulate 𝑀 on 𝑤

2. If it halts, accept

3. Otherwise, reject
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Does the proposed algorithm work?

Respond at PollEv.com/whoza or text “whoza” to 22333 

B: No. There are inputs for which
it should accept, but it doesn’t

A: No. It’s not necessarily possible
to simulate 𝑀 on 𝑤

D: Yes. HALT is decidable
C: No. There are inputs for which
it should reject, but it doesn’t

?
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